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Estimation of thermodynamic data for metallurgical applications
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Abstract

The ever growing need to develop new materials for specific applications is leading to increased demand for thermodynamic
values which have not been measured so far. This necessitates the use of estimated values for evaluating the feasibility or
suitability of different proposed processes for producing materials with particular compositions and properties. Methods for
estimating thermodynamic properties of inorganic and metallic substances are presented in this paper. A general
categorization into estimation methods for heat capacities, entropies and enthalpies of formation has been used. Some
comparisons of estimated values with experimental data are presented and possible future developments in estimation

techniques are discussed. © 1998 Elsevier Science B.V.
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1. Introduction

The present-day availability of advanced, user-
friendly commercial software considerably facilitates
the thermodynamic calculation of reaction equilibria,
even in very complex systems. However, published data
for many substances and systems of practical interest
are still not complete, especially in the ever-widening
field of materials chemistry, where reliable thermo-
dynamic data not only for stable but also for meta-
stable phases are becoming increasingly important.

When such data are lacking, it is necessary to
estimate the missing values with reasonable accuracy.
For stoichiometric inorganic compounds, this task is not
as difficult as it might appear, for many of the prin-
ciples which are applicable have been well established
for a considerable time. For solution phases, however,
methods available are generally more complex, and
software incorporating various solution models has
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been written with the aim of providing missing data
from the more limited information available.

Experience is required to enable the best choice of
estimation method to be made in each particular case,
and if necessary to develop new methods. A selection
of current methods used to estimate thermodynamic
values for both pure stoichiometric substances and
solution phases of different types, as well as some
examples of their application, are given in this paper.
Due to space limitation, only condensed phases are
discussed. Further examples and more detailed
descriptions of individual estimation methods can
be found in Chapter 3 of Ref. [1].

2. Pure inorganic substances

2.1. Heat capacities

For most materials applications, it is sufficient to be
able to estimate heat capacities at room temperature
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and above. Heat capacities at lower temperatures will
not be considered here.

2.1.1. Solids

Kellogg [2] originally suggested a method for esti-
mating the heat capacity of predominantly ionic, solid
compounds at 298 K. It is analogous to Latimer’s
method for the estimation of standard entropies [3]
and consists in adding together contributions from the
cationic and anionic groups in the compound (here
denoted as 6(cat) and #(an)). Using the then available
compiled experimental data, Kellogg derived average
values of f(cat) for the metallic ions independent of
their valency and of f(an) for the anions, depending on

valency. The estimated heat capacities at 298 K were
then obtained by summing the various contributions,
ie. Cp(298 K)=2X0.

Kubaschewski and Unal [4] revised the tables of
Kellogg from an analysis of a larger set of experi-
mental C,(298 K) data. Within the scatter of the
individual values, and in contrast to Kellog’s findings,
it was found possible to represent the 6(an) contribu-
tions by a single number for each anion independent of
valency. (See Tables 1 and 2 below).

A further analysis carried out, here, on newer data
for oxide species has enabled still more anions to be
taken into account. As an example, the heat capacity
of 1 mol of calcium aluminate at room temperature

Table 1
Cationic contributions to the heat capacity at 298 K
Metal Occary Metal Ocan Metal O can Metal Ocan)
J/K) J/K) J/K) J/K)
Ag 25.73 Fe 25.94 Mn 23.43 Sn 23.43
Al 19.66 Ga (20.92) Na 25.94 Sr 25.52
As 25.10 Gd 23.43 Nb 23.01 Ta 23.01
Ba 26.36 Ge 20.08 Nd 24.27 Th 25.52
Be 9.62) Hf 25.52 Ni (27.61) Ti 21.76
Bi 26.78 Hg 25.10 P 14.23 Tl 27.61
Ca 24.69 Ho 23.01 Pb 26.78 U 26.78
Cd 23.01 In 24.27 Pr 24.27 \Y 22.18
Ce 2343 Ir (23.85) Rb 26.36 Y (25.10)
Co 28.03 K 25.94 Sb 23.85 Zn 21.76
Cr 23.01 La (25.52) Se 21.34 Zr 23.85
Cs 26.36 Li 19.66 Si —
Cu 25.10 Mg 19.66 Sm 25.10
Table 2
Anionic contributions to the heat capacity at 298 K
Anion A(an) Anion 6(an) Anion f(an) Anion A(an)
J/K) J/K) J/K) J/K)
Br 25.94 CO; 58.58 Cr,04 125.33 Si,05 106.79
Cl 24.69 NO; 64.43 Fe,04 126.05 TiO3 74.45
F 22.80 OH 30.96 GeO; 72.08 TiO4 92.52
H 8.79 SO, 76.57 HfO, 78.47 Ti,Os 124.69
I 26.36 AlO4 98.52 MoOy4 92.77 U0, 107.11
(¢} 18.41 Al O¢ 135.46 Nb,O¢ 155.99 VO, 89.2
P (23.43) BO, 41.19 PO, 75.72 V106 143.08
S 24.48 B,0¢ 111.20 SeO; 73.32 V,0, 163.5
Se 26.78 B4O; 134.26 SiO; 62.93 WO, 97.49
Si (24.68) CrO,4 92.27 SiO4 78.34 ZrO; 75.06

Te 27.20
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may be estimated:

C,(298K) =36(Ca)+16(Al,0¢)
—=74.07+135.46=209.53J/K - mol
(1)

which compares with the measured value of 205.43
J/K-mol.

The heat capacity of solids at the melting point is
roughly the same, per ion or atom, for all compounds.
Kelley [5] took this value to be 29.3 J/K-mol.
Kubaschewski [4], with more recent experimental
evidence, increased this average to (30.34+2.1)J/
K-mol. Not included in the evaluation of the mean
deviation were the data for those substances which
undergo a solid-solid transformation below the melt-
ing point, nor for those that have a melting point below
ca. 420 K. If one includes the first transformation
rather than considering the melting point alone, the
average value turns out to be closer to Kelley’s original
value 29.3 J/K-mol — a point that should be noted.
These observations taken together with the values in
Tables 1 and 2 may be used to recommend the estima-
tion of the constants in a heat-capacity equation of the
type

Co=a+bx107T +cx 10°T? )

Earlier estimated C;, vs. T relations [5] were often a
two-term linear expression. However, the introduction
of a T2 term enables the pronounced curvature at
lower temperatures (above 298 K) and around the
Debye temperature to be described more accurately.
When values of ¢ in Eq. (2) as obtained from different
experiments are compiled, they show a considerable
scatter, due more to the inaccuracy of the differentia-
tion of experimental enthalpy data than to the actual
relations. A mean value of c¢/n=—4.12J/K was
obtained from the 72 terms of some 200 inorganic
substances [4].

Expressions for the constants in Eq. (2) were
derived [4] as follows:

Here, T, is the absolute melting temperature of the
compound and » the number of atoms in the molecule.

If Cp(298 K) is known from low-temperature mea-
surements, the experimental value should, of course,
be used instead of X0, the estimated value. Adjust-
ment of the estimated equation can also be made if the
heat capacities of compounds similar in mass and
chemical nature to the one under consideration are
known. Although the average value of Cy(Ty,)/n
increases somewhat with molecular weight, the scatter
in the data and the smallness of the effect make it
difficult to justify a two-term expression in terms of
log M.

Hoch [6-9] has shown that the high-temperature
heat-capacity data of solids can be represented by the
equation

C, = 3RF(0p/T) + bT + dT* (6)

where F(0p/T) is the Debye function, b is equivalent to
the electronic heat capacity, and d reflects only the
contribution of the anharmonic vibrations within the
lattice. The equation is valid in the temperature range
between fp and the melting point. By plotting the
experimental heat-capacity data for a number of
metals and ceramics using Eq. (6) in the rearranged
form

C, — 3RF(0p/T)
T

Hoch was able to derive values for the electronic
heat capacity, b, and for the heat capacity due to the
anharmonic vibrations, d, from the intercepts and
slopes, respectively, of the linear plots. For insulating
materials, b=0 and the line passes through the origin.
Using this approach, a very satisfactory description of
the heat capacities of Nb, Ta, Cr, Re, Mo, W, Cu, Al,
UO,, UO,.,, US, UN, UC, and Al,0O3 was obtained.
Eq. (7), thus, appears useful as a general equation for
estimating the heat-capacity data for solids, where
values are scarce or rather unreliable.

=b+drl’? (7)

T x 1073(320 + 1.125n) — 0.298n x 105T,, — 2.16n
a =

T x 1073 —0.298

. 6.125n + 10°nT,, — 30
T T,1073—0.298

c=—4.12n (@)

“4)

3)

Lacking any information about the heat capacity of
a compound, C, may be assumed to be zero for
condensed reactions without affecting most calcula-
tions too seriously. This postulate regarding the addi-
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tivity of the heat capacities of the elements or the
reactants to give the heat capacities of the compound
or the products in a reaction is known as Neumann and
Kopp’s rule. It has been found to be approximately
valid for a large number of reactions and so has been
used frequently. Neumann—Kopp’s rule holds good,
especially for alloy phases.

2.1.2. Liquids

The heat capacities of molten inorganic substances
do not differ greatly from those of the corresponding
solid materials and the heat capacity of an inorganic
liquid amounts from 29.3 to ca. 33.5 J/K-mol, to some
extent depending on the atomic weight of the sub-
stance concerned. The value 31.4 may be used if
measurements are not available; alternatively, the
atomic heats of the liquid constituent elements may
be taken additively.

Hoch and Venardakis, in a series of publications,
e.g. [10,11], have analysed experimental heat-capacity
data for a number of liquid metals, oxides and halides.
They suggest that the experimental data indicate
anharmonic contributions to the heat capacity of the
liquids close to the melting point. As the temperature
is raised, the anharmonic contributions decrease and
the heat capacity at very high temperatures is made up
of two parts — a term which corresponds to the Debye
function, and a linear term which can be assigned to
the electronic heat capacity.

The equation derived by Hoch and Venardakis, to
describe the heat capacity of liquid inorganic sub-
stances of various types at high temperatures, is

C, = 3RF(0p/T) + gT + hT~* (8)

where g is the electronic heat capacity and & the
anharmonic term.

Eq. (8) was applied to a wide variety of metallic and
inorganic materials and the fit was very good in all
cases, although scatter in the published enthalpy data
result in values of the anharmonic contribution, #,
ranging from 4% for Al,03 to 18% for Fe. Because of
its apparent generality, Eq. (8) seems suitable for
estimating high temperature heat-capacity values for
other liquid metals and inorganic compounds where
the available data are scarce.

More recently, Hoch has shown [12] that, within the
experimental error, the term dhimb? is constant, where
d and h correspond to the appropriate constants in the

Table 3
Relation between the anharmonic terms for substances in the solid
and liquid state

Substance  fp d h Mass/atom  dh/m6*

Li 344  4.60E-8 141E+6 7 7.81E-8
Pb 105 8.79E-9 1.81E+6 207 6.98E-9
In 109 2.96E-8 3.30E+5 115 7.15E-9
Bi 117  8.28E-9  5.99E+5 209 1.73E-9
Ti(a) 420  4.90E-9 6.11E+7 48 3.53E-8
Fe(gam) 470  1.61E-9 3.26E+7 56 4.25E-9
Mo 380 7.66E-10 4.58E+7 96 2.53E-9
Al,O4 895 5.02E-10 9.54E+7 20 2.93E-9
U0, 590 1.39E-9 2.28E+8 90 1.01E-8
NaCl 1074  8.43E-9 1.28E+7 29 4.97E-8
CaCl, 989 4.14E-9 1.59E+7 37 2.81E-8
MnCl, 882  7.53E-9 7.30E+6 42 2.27E-8
MgF, 1460 1.70E-9  1.85E+7 21 4.59E-9

equations for the heat capacity of solids and liquids,
respectively, and m the mass per atom in a compound.
Thus, if Cy(L) is unknown for a particular compound,
the constant value of dh/m6” can be used to estimate h,
using the known value of d. The resulting error in
Co(L) will be relatively small because only a correc-
tion term is calculated. The general constancy of
dhim®* is illustrated by the values given in Table 3
for a range of materials.

2.2. Enthalpies and entropies of transformation

A knowledge of enthalpies of transition is more
important than that of variation in heat capacity since
the former have a relatively greater effect on the value
of the Gibbs energy of a substance. Fortunately, the
methods available for estimating their value, given a
knowledge of the molecular structure of the substance,
are fairly reliable.

2.2.1. Fusion

2.2.1.1. Entropy of fusion as a function of tem-
perature of fusion. For the elements, several authors
have reported simple linear correlations between the
entropy of fusion and the melting temperature for
elements of a given structure. Such correlations have
been used, for example, by Saunders, Miodownik and
Dinsdale in producing sets of values for the SGTE
Unary Database [13].
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Fig. 1. Entropy of fusion vs. temperature of fusion for alkali metal halides.

The correlations have been tested further here for
inorganic compounds of a given structure and are
found to hold quite well for alkali chlorides, bromides
and iodides with the NaCl structure (Fig. 1) and for
some transition metal monosilicides with the B20

structure (Fig. 2).

2.2.1.2. Enthalpy of fusion from the enthalpy of the
solid at the melting point. Kazragis et al. [14] have

S(fus)/J/K.mol

‘17J

demonstrated for the elements that a simple relation
exists between the enthalpy of fusion and the enthalpy
of the solid at the melting point. These authors also
propose an equation to represent the entropy of
fusion:
ASpys = S(298 K) + A[0.023a(log Ty, — 2.4742)
+1073h(T,, — 298)
+0.005¢(1.1261 — 10°/T2)] )

T T T T
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Fig. 2. Entropy of fusion vs. temperature of fusion for transition metal monosilicides.
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where A is the atomic mass, and a, b and ¢ are
coefficients in the heat-capacity equation

Cp=a+bT +cT?

The correlation AH,, vs. H(T,,)—H,9g has been
tested both for a group of inorganic compounds
with the same structure (Fig. 3) and for inorganic
compounds with different structures (Fig. 4). The
latter included oxides, halides, carbides, etc.

28—-
26-
2-
22—-
20-
18—:

16

H(Tfus)-H(298)/kJ/mol

147

12 4

selected at random. The alkali halides give a very
good linear correlation (Fig. 3) and even though there
is a fairly large scatter from linearity for the different
types of compound plotted together (Fig. 4), the
correlation appears to offer good general
possibilities for estimating unknown enthalpies of
fusion.

For practical applications, enthalpies of fusion are
small compared with the total heat content of a

T T T v T T 1
12 14 16 18
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Fig. 3. Enthalpy of fusion vs. enthalpy at the melting point for alkali metal halides.
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Fig. 4. Enthalpy of fusion vs. enthalpy at the melting point for a selection of inorganic compounds with different structures.
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material, and even an approximate estimate is ade-
quate for calculating equilibria involving liquid spe-
cies. For this purpose, entropies and enthalpies of
fusion may be estimated by comparison with similar
compounds in the Periodic Table.

2.3. Entropy and entropy changes
2.3.1. Standard entropies

2.3.1.1. Elements. Although the standard entropies of
nearly all elements in their stable structures are known
more or less accurately, reliable estimation methods
are still required to obtain values of the entropies of
metals in metastable or non-stable structures. If such
information were available, the calculation of alloy
phase equilibria could be significantly refined. From
an analysis of the phase equilibria, in a large number
of binary alloy systems, Kaufman and Bernstein [15]
have derived approximate entropy (and enthalpy)
differences between the stable and metastable
structures of many metallic elements. In particular,

the fcc, bee and hep structures have been considered.
Fig. 5 illustrates such differences for the hcp and bec
structures across the second and third Long Periods of
the Periodic Table.

Thermodynamic data for transformations between
other metastable structures and the stable structures of
the pure elements are still needed as are the equivalent
data for compounds such as oxides, carbides, nitrides,
etc. which play an important role in many areas of
materials technology. Curves such as those shown in
Fig. 5, together with standard entropy values for the
stable phases of the elements, enable standard entropy
data for the elements in metastable structures to be
derived.

2.3.1.2. Inorganic compounds. Latimer’s method for
obtaining the standard entropies of predominantly
ionic compounds from the empirically found values
for the anion and cation contributions [3], has been up-
dated by Mills [16] from an analysis of experimental
data for ca. 300 compounds. The overall standard
deviation of the resulting Sops—Sest values, 5.4/

Group number
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Fig. 5. Enthalpy and entropy differences between the hcp(e) and bee(/3) forms of the transition metals.
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K-mol, is smaller than that associated with Latimer’s
earlier values. The data presented by Mills, for the
cationic and anionic contributions to the standard
entropy of inorganic compounds of general formula
MX,, were calculated for {M} and n{X} and are listed
in Tables 4 and 5.

To obtain the standard entropy of a solid compound
from these tables, the appropriate value for its cation in
Table 4 is multiplied by the number of cations in the

molecule and added to the anion contribution,
obtained by multiplying the value given in Table 5
according to the charge on the cation by the number of
anions in a formula weight. Thus, the standard entropy
of Al,(SO,4); is obtained as S(298 K)=(2x23.4)+
(3x64.2)=239.4 J/K-mol.

Although Latimer originally devised the method,
described above, for application to predominantly
ionic compounds, Mills has also demonstrated its

Table 4
‘Latimer’ entropy contributions {M}
M {M} M {M} M {M} M {M}

(J/K mol) (J/K mol) (J/K mol) (J/K mol)
Ag 57.6£2.5 Fe 35.0+7.8 Nd 60.7 Sm 60.2
Al 23.4+6.7 Ga 40.0+2.5 Ni 35.14£5.0 Sn 58.2+7.6
As 45244.6 Gd 56.0 Os 50+8 Sr 48.7£2.5
Au 58.54+2.0 Ge 49.8+3.3 P 39.5 Ta 53.8
B 23.5 Hf 53.0 Pb 72.245.0 Tb 55.2
Ba 62.7£3.0 Hg 59.4+5.4 Pd 45.6+£2.2 Tc (42)
Be 12.64+4.2 Ho 56.0 Pm 61) Te 69
Bi 65.0+9.2 In 55.0+6.0 Pr 61.1 Th 59.94+0.8
Ca 39.1£2.9 Ir 50.0 Pt 39.3£1.5 Ti 39.3+8.0
Cd 50.7+£3.4 K 46.4+0.8 Rb 59.2+0.5 Tl 721427
Ce 61.9 La 62.3 Re 42+6.5 Tm 52.3
Co 34.1+3.3 Li 14.6+3.8 Rh (46) 6] 64.0+£5.2
Cr 32.9+5.9 Lu 51.5 Ru 5348 \% 36.8+6.3
Cs 67.9+3.7 Mg 23.4+4.2 S 48 w 40.9+3.3
Cu 44.0+5.0 Mn 43.84+6.7 Sb 58.9+8.3 Y 50.4+4.2
Dy 54.8 Mo 35945.2 Sc 36.0+1.3 Yb 54.0
Er 54.8 Na 37.24£3.8 Se 60.5 Zn 42.8+6.3
Eu 60.2 Nb 48.1+£2.5 Si 35.2 Zr 37.249.6
Table 5
‘Latimer’ entropy contributions "{X} as a function of the charge number, n, of the cations
X "{X} (J/K-mol)

n=1 n=2 n=2.67 n=3 n=4 n=>5 n=6

0> 4.5 29 0.4 2.4 32 7.1 12.7
s 20.6 18.4 20.1 17.0 224
Se?” 355 32.8 34.1 30.9
Te?~ 383 419 44.1 40.1
F~ 20.8 17.0 18.3 20.3 224 272
Cl™ 36.3 31.8 30.3 34.4 37.2
Br- 50.3 45.7 44.7 50.8
I 58.3 53.5 54.8 53.9 59.4
coi 62.4 46.6
S03~ 80.0 69.5 64.2
NO3y 86.0 74.0
NO; 70.6 (61)

Nerw 429
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usefulness for estimating standard entropy values for
non-ionic compounds. Values of the { X} contributions
to the standard entropy of metallic borides, carbides,
silicides, nitrides, phosphides, arsenides and anti-
monides were derived from the more limited data
available for such substances and the uncertainties
associated with the resulting values were not much
larger than those found for ionic compounds. Mills
attributed this consistency to the similarity of crystal
structure and bonding characteristics for most com-
pounds of an element X with a given stoichiometry.

Table 6 presents the newly updated values obtained
from an analysis of a large number of such compounds
contained in the SGTE Pure Substances Database
[17]. The classification into different MX, types, as
employed by Mills, has been retained here. However,

because of the stoichiometric ranges shown by a
number of the compounds involved, the values pre-
sented in Table 6 should only be considered useful in
providing a guide to the magnitude of missing entropy
data.

Richter and Vreuls [18] have estimated standard
entropy values for solid and molten salts within a
mean deviation of ca. 3.5% based on the linear
dependence of the entropy on the radius, r(c), of
the cation constituent of the compound. The linear
extrapolation to zero of r(c) leads to the anionic
contribution of the molar entropy depending on the
cationic charge. Evaluation of cationic contributions
to the entropy can be made from experimental data
and the method has the advantage that its application is
not restricted to ionic compounds only. Table 7 pre-

Table 6
‘Latimer’ entropy contributions {X} for metallic borides, carbides, silicides, nitrides, phosphides, arsenides and antimonides
X {X} (J/K mol)
in MXg 33 in MXg 5 in MXg 741 in MX in MX, in MX3
B —(18.4+4) -9.5 —(6.5+3) —(2.1+3)
C —(13.6£10) —(6.5+4) —(9.6+5) (10.8£5)
Si —(4.548) (5.84+4) (6.5+4) (12.2+3)
N —16.8(£10) -1.5 —(4.615) (20+5)
P —(2.243) (6.3£5) (7.2£5) (10.6£5)
As (43.8+6) (23.0+8) (27.8£10)
Sb (40+10) (26.6+8) (40.4+£5) (36+8)
Table 7

Anionic contributions to the entropy of solid salts at 298 K as a function of cation charge

Anion S(298 K) (J/K mol) Monovalent cation Divalent cation
Monovalent cation Divalent cation Anion cation
F 8.9 18.6 Cr, 05~ — 84.7
Cl™ 37.8 30.5 Fe,03~ — 96.3
Br~ 51.6 47.0 MoO;~ — 84.3
- 65.9 53.9 0> 6.4 2.5
H™ 2.1 — 03~ 21.9 —
OH™ 25.1 18.3 0>y 76.0 —
NO3y 83.6 66.1 PO;~ — 60.3
ClOy 105.8 — s 31.3 18.1
AlFS- 114.2 — Si0%- 434 39.9
AICI3~ 229.0 — Sio}~ — 40.2
AlLO3~ — 57.0 SO;~ 84.8 68.7
B,0% — 61.8 TiO%~ — 51.6
B,O%~ 117.6 94.8 TiO}~ — 62.6
BsO%y 156.9 — WOz~ — 85.6
Cco3- 63.3 444
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Table 8
Cationic contributions to the entropy of solid salts at 298 K
Cation S(298 K) Cation S(298 K)
(J/K mol) (J/K mol)
Agh 55.3 Lit 19.7
Ba*" 59.3 Mg+ 26.7
Be?* 13.2 Mn** 48.1
Ca*t 39.5 Na* 34.0
cd>* 51.3 Ni** 333
Co** 44.8 Pb>* 72.7
Cs* 62.1 Rb* 55.9
Cu** 415 Sn** 60.9
Fe>* 522 Sr*t 52.9
Hg>" 67.1 TI* 68.3
K" 46.4 Zn*t 479

sents the anionic contribution to the standard entropy
of solid salts at 298 K as a function of the cation charge
and Table 8 presents the cationic contributions as
evaluated by Richter and Vreuls.

2.3.2. Entropies of mixing of non-metallic solution
phases

In deriving entropies of mixing for non-metallic
solutions, it should always be remembered that a
mixture of cations contains not only the configura-
tional entropy arising from the random distribution of
cations on the cation sub-lattice, but also a thermal
entropy term related to heat capacity changes. For
example, in the formation of spinels from their con-
stituent oxides, Jacob and Alcock [19] found that the
configurational term is always accompanied by a
thermal entropy of formation which must be added
to the configurational entropy to obtain the total
entropy of formation. Such thermal terms arising from
the changes in the vibrational structure of the cations
and their surrounding oxygen ions on formation of an
inter-oxide compound should always be considered.

In the spinel studies, it was found that the thermal
entropy of formation of spinels, such as Fe;Oy,
FeAl,O,4, FeV,0, and FeCr,04 could be represented
by the equation

AgS = —7.32 + ASM J/mol (10)

where —7.32 entropy units originate from the non-
configurational source.

2.4. Enthalpies of formation

2.4.1. General

Information on the enthalpies of formation of the
substances taking part in a reaction are essential to
obtain reliable evaluation of Gibbs energy values, and
hence allow calculation of particular chemical equili-
bria of interest. However, the methods available for
estimating enthalpies of formation are often not very
exact and apply to a relatively small group of com-
pounds only. Consequently, all possible methods
should be used to estimate a single value. Since the
variation of enthalpies of formation with temperature
is generally small, the values can often be assumed to
be temperature-independent, provided no phase trans-
formation takes place.

2.4.1.1. Empirical relations. In a series of papers,
Hisham and Benson [22-29] have compiled
information on the enthalpies of formation of a
wide variety of inorganic compounds and derived
empirical relations to enable known values to be
calculated to within close limits, and missing values
to be estimated, for particular groups of compounds.
Some of the equations that have been derived are
presented below.

2.4.2. Polyvalent metal oxides [22]

For polyvalent oxides, MO,, which have three or
more well-defined stoichiometric valence states, the
following relation holds:

—AtHog = az + bz’ (11

The authors present values of a and b for 15 metals

2.4.3. Metal oxyhalide compounds [24]

Examination of 35 solid metal oxyhalides, MO,X,,
showed that their standard enthalpies of formation can
be correlated quantitatively with the enthalpies of
formation of the corresponding oxides and halides
of the same oxidation states by the equation:

A¢H3o (MO, X,)
= a[(2x/z)AfH398 (Moz/z)
+ (y/2) AtHyog (MX,)] 4 C (12)

where z=2x+y is the formal oxidation state of the
metal and MO_/, and MX, are the corresponding oxide
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and halide of the same oxidation state z. C is a
correction factor in kJ/mol.

For main and first transition-metal compounds, a=1
and C=0. For trivalent-state lanthanides, a=2.155+
0.12 and C=1078.64+5.4 or 1047.7+5.0 kJ/mol. For
tetravalent oxychlorides, a=1 and C=20.9 kJ/mol.
For penta- and hexavalent compounds, a=1 and
C=0.

2.4.4. Double salts with the formula MX,Y, [25]
The standard enthalpies of formation of double salts
of the type MX,Y}, can be calculated additively from
the enthalpies of formation of their binary salts MX,
and MYy.
For divalent metals the relation takes the form:

ArHYos(MXY) = 1/2A¢H3os (MX5)
+ 1/2A¢H3%(MY2)+C  (13)
where C=—13.4 or —17.6 kJ/mol
From an analysis of the more limited amount of

data, available for trivalent and tetravalent metals, a
simple additivity relation is again found

ArHog (MX, Yy)
= (ax/z) AtHyog (MX, )
+ (by/2) AtHag (MY ) + C (14)

where x, y, and z are the formal valencies of X, Y, and
M, respectively, i.e. z=ax+by, and C=0.

2.4.5. Oxides, carbonates, sulphates, hydroxides and
nitrates [26]

The standard enthalpies of formation of any three
compounds for a particular metal oxidation state can
be correlated quantitatively by two-parameter linear
equations.

For mono- and divalent compounds

Ang%(SOU - Ang% (0)
= 1-36[AfH(2)93(CO3) - AfH(2)98(O)]
— 13.4kJ/mol (15)

For monovalent compounds
Ang%(OH) - Ang%(O)

— 0.463[ArH(SO4) — ArHg(0)]
—9.6kJ/mol (16)

and
AngQS (NO3) - AfH298 (O)
= 1.02[ArH3g(SO4) — ArHog(0)]
—234.7kJ/mol (17

For divalent compounds
Ang%(OH) - AfH(z)%(O)
= 0.318[ArH}95(SO4) — ArHjgg(0)]
+ 94.6kJ/mol (18)

and
A¢H3og(NO3) — AHj4(O)
= 1.025[ArH%g (SO4) — AtHg (O)]
—500.4kJ/mol 19)

where  AtHjos(0),  AtHiog(SO4),  ArH3og(CO3),
A¢H%¢(NO3), and A¢H%(OH) are the standard
enthalpies of formation in kJ/mol of the oxide, sul-
phate, carbonate, nitrate, and hydroxide, respectively,
of the metal.

2.4.6. Halides [28]

The standard enthalpies of formation of any three
solid halides, MX,,, MY,,, and MZ,, of any metal M
with formal valence n (including cations such as
NH}), can be correlated by the general equation

Ang% (Mxn) - Ang% (MY,,)
= a[AHs (MX,) — A¢Hg(MZ,)] + bn
(20)

The coefficients a and b are the same for any
particular main or subgroup of a given valence state.
Values of b vary over a wide range, but a is always
close to unity.

For any given group, maximum deviations are
found to be no more than +12.5 kJ/mol.

2.4.6.1. Enthalpies of formation of double oxides.
Many methods are presented in the literature for
estimating enthalpies of formation of double oxides.
These are becoming increasingly important as new
materials are developed. Some of the methods are
specific to small groups of materials, others can be
applied to a wider range of substances. Slough [30] has
made a comparison of the methods available for
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estimating such values and has tabulated the results
obtained. A summary of some of these methods is
presented below.

2.4.7. Plots involving the ratio of ionic charge to
ionic radius

Using the basic assumption that van der Waals
and polarization forces are of major importance in
determining the enthalpy change on reaction of
two different oxides, Slough has developed a useful
procedure for estimating this change [31]. He found
that for many double oxide combinations, good
linear plots of C/R against Anggs from the com-
ponent oxides were obtained. (C is the charge
number and R the crystal ionic radius of the cation.)
Ferrates, titanates, tungstates, vanadates, zirconates,
silicates, selenites and borates were all analysed
in this way. Deviations of individual points from
the linear plots were usually <20 kJ/mol. Fig. 6
illustrates plots obtained for certain borates and
silicates.

Since the ionic charge of the cation is of major
importance in applying this method, double oxides,
formed from metal oxides in which covalent bonding
predominates (e.g. BeO, Ag,0, or Cu,0), do not fit
into the plots concerned.

2.4.8. Statistical analysis methods

Schwitzgebel et al. [32] have produced a general
relation for the estimation of enthalpies of formation
of double oxides based on a statistical correlation of

existing data. This relation takes the form
A¢HYg KJ/mol = —4.184b(K, — Ap)""  (21)

where A¢HYq is the enthalpy of formation from the
component oxides, K, represents the base strength of
the oxide « or alternatively, the stability of the cation
in the double oxide combination, Ag represents the
acid strength of oxide 3. The exponent nf3 is taken to
be a characteristic of the anion resulting from the
double oxide combination. The cation and anion
parameter values given by Schwitzgebel et al. are
reproduced in Tables 9 and 10.

Table 9

Cation parameters

« K, « K,
Ag* 8.97 Li* 15.39
AT 437 Mg*+ 8.68
Ba>* 18.18 Mn*" 9.10
Be?t 4.93 Mn®* 5.47
Bi*" 7.75 Na*t 19.97
Ca®t 13.10 NiZ+ 7.46
cd*t 8.53 Pb*" 9.34
Ce*t 9.05 Rb™ 24.60
Co** 8.95 Sb>+ 3.24
Cs* 25.31 Sn** 1.41
Cut 4.08 Sr*t 15.74
Cu*t 453 Th** 7.73
Fe* 8.25 Ut 6.79
Fe3* 4.29 Zn** 6.56
K* 23.73 7t 9.87

-AHO (r, 298 K)/kcal mol~!
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Fig. 6. Enthalpy of formation of certain borates and silicates as a function of the cation charge to radius ratio.
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Table 10

Anion parameters

B Ag ns
SO3~ =9.77 1.45
Cco3%- 0.00 1.43
Nezw —2.60 1.44
Fe,03~ 7.45 1.39
CrO;~ 0.13 1.43
V,02" 1.55 1.47
TiO%~ 5.13 1.40
WO 0.87 1.48
MoOy;~ —2.87 1.38
AlLOF 5.24 1.38

2.4.8.1. Additivity of bond energies — ‘Le Van’s
method’. Le Van [33] has described a method for
estimating enthalpies of formation of oxyacids

based essentially upon the assumption of additivity
of bond energies. This allows Anggg for an oxyacid
salt to be expressed in terms of two characteristic
parameters, P and Q, as given by the relation

ArHYoe kI /mol = [n(p)P + n(q)Q
+4.184(4(n(q))” + 4.184(n(p))’] (22

where n(p) represents the number of anions, n(q) the
number of cations, and the characteristic parameters P
and Q refer to anion and cation, respectively. Values of
the parameters P and Q are given in Tables 11 and 12.

2.4.8.2. Comparison of data for similar compounds.
Slobodin et al. [34] calculated enthalpies of formation
for selected ortho-vanadates from a comparison of
A¢HY%g values for various compounds with the same

Table 11

Values of the parameter Q

Cation Q Cation o Cation (0] Cation (0]
Ag" -9 Cs™ —444 Lit —452 Sb>* —393
AT -916 Cu" —84 Mg*" —741 Sn** —406
Ba®" —883 Cu*" 213 Mn?" —523 Sn** —544
Be*" —653 Fe*" —372 Na* —448 St —862
Bi*" —469 Fe*™ —423 NH4+ —326 Th** —1435
Ca*" —858 Hg" —121 Ni** —-331 Ti** —544
cd*t —385 Hg*" —167 Pb>* —352 TI* —205
Ce*" —1239 " —649 pd** —205 utt —958
Co*" —343 K" —448 Ra>* —891 uo2** —1292
crrt 728 La**t —1213 Rb* —444 Zn** —439
Table 12

Values of the parameter P

Anion P Anion P Anion P Anion P
ALO}™ —1494 Cro; —565 H;P,07 —2121 TiO3~ —795
AsO}~ —460 Cr,02~ —1075 S0%- —569 uoz- —1318
HAsO}~ —607 105 —-109 ReO; —657 VO; —762
H,AsO; -753 MnO; -393 Se0%~ -305 VO~ -975
BO; —653 MoO3~ —732 Si0}~ —795 w03~ —845
BO; -515 NO3 +29 Sn0%~ —381 Zn0%~ -13
B,03~ —2853 NO; —67 S03~ —314

BrOy +84 PbO3~ —84 HSO;3 —444

Clo™ +50 PO4;, —854 HSO; —724

Clo; +63 HPOZ~ 983 S,0% —314 HCOO™ —285
ClOy +34 H,PO; —1146 $,0% —644 CH;CO0™ —326
clo; +21 HPO%~ —623 S,02" —-908 CH;CH,COO™ -352
CNO~ —-13 H,PO; 799 $,02~ —1105

coi -356 P,0%- —1766 S,0%~ —950

HCO; —544 H,P,02 —2004 Sr03~ 335
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cation and the ortho-, EOy4(n-), anion. Thus the
sulphates, phosphates, molybdates, and
orthovanadates of di- and trivalent elements were
chosen for comparison, and calculations were made
using the relation

A = ANHg/rm (23)

where AAng% is the difference between the
experimental and additive value for formation of the
particular compound from the corresponding oxides
(referred to one EO4(n-) group), r the radius of the
cation, and m the number of cations per EO4(n-)
group.

Slobodin et al. found, for the four types of salt
selected, and using Ba2+, Ca”, Mg”, Sr2+, Fe”,
NiZt, APP*, Cr’ T, Fe’" as the cations concerned, that
the values of A for compounds with the same cation
vary almost linearly and that the straight lines joining
the values of A for compounds with the same cation
are parallel. (see Fig. 7). This enables missing values
to be estimated with a fair degree of certainty. The

100

80

60
\\
A
40 a2
x 3
o4 x
*5 N e
20 + 6 . N
a7 N
[ \\
v 9

0

Fig. 7. Dependence of the parameter A for various compounds
with the same cation on the anionic groups: (I) sulphates; (II)
phosphates; (III) molybdates; (IV) vanadates; (1) crt; 2) AP
(3) Sr*"; (@) Ba®; (5) Ca®'; (6) Fe™*; (1) Mg™™; (8) Ni*™; (9)
Fe*'.

method can presumably be applied in a similar manner
to other compounds.

3. Alloys

It is important to emphasise that an alloy system
must be considered as a whole when evaluating ther-
mochemical data critically. Consideration of phases
individually, and not in relation to neighbouring
phases, has often led to inconsistencies when the
resulting data are used to calculate phase equilibria
in a given system. Several methods of approximating
the thermodynamic properties of alloy phases are
described in Chapters 1 and 4 of [1]. Here, some more
recent published methods for calculating thermo-
dynamic values of alloys from available physical
property information are presented.

3.1. Homologous series

A certain relationship appears to exist between the
enthalpy of formation of metal compounds and the
atomic number of the metal in compounds of the same
stoichiometric proportion and the same common radi-
cal. Depending on the compounds concerned, the
curves obtained from this correlation may show sharp
maxima and/or minima, but missing values can never-
theless be predicted from the curves with a fair degree
of reliability.

More recently, Pettifor [20] has reorganised the
Periodic Table of the elements into a single string
instead of the normal Periods and Groups — the relative
ordering being given by what Pettifor terms the
‘Mendeleev number’. The resulting sequence is illu-
strated in Fig. 8.

The purpose of the re-ordering was to permit a
better classification of the structures of binary com-
pounds. Using this new arrangement of the Periodic
Table, enthalpies of formation of particular types of
compound with particular structures can be plotted as
a function of the Mendeleev number. Such a plot has
been made by Stolten [21] for metal nitrides and
carbides with the cubic NaCl structure Fig. 9. A
similar plot for the transition metal silicides, MsSis,
with the D8, structure is presented in Fig. 10.

The values lie on a smooth curve, rather than on the
more irregularly-shaped curves resulting from the
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Fig. 8. The Pettifor single string rearrangement of the Periodic Table in the sequence of the Mendeleev number.

‘conventional’ Periodic arrangement. This enables not
only missing values to be estimated for compounds
which are known to exist, but also values which
correspond to compounds in a metastable structure.
Such information is particularly important in calculat-
ing the stability ranges of phases formed from mix-
tures of compounds.

3.2. The ‘Miedema method’ for enthalpies of mixing
and formation

In the Wigner—Seitz model of the alkali metals each
atom is segregated into a volume within which all the
electrons on the atom are treated as being localized
and in normal atomic states except one electron, which
is in an s state and is treated as the electron giving rise
to the electrical conductivity of the metal. This elec-
tron has a wave function which is different from that in
the isolated atom. The s wave function at the periphery
of the cell occupied by each atom joins smoothly with
the s wave function in neighbouring cells, thus per-
mitting easy movement of s electrons among the cells.
This gives rise to metallic conduction.

When an alloy is formed between two elements, the
cells containing the metallic ions will differ from one
metallic species to the other. The nature of these

species and their relative attraction for valence elec-
trons, which is reflected in the Pauling electronegativ-
ities, makes an important contribution in a negative
sense to the enthalpy of formation of alloys according
to Miedema [35]. Counteracting this effect is the mis-
match of conduction electron wave functions and
electron densities at the joining plane between two
cells containing different metallic ions. This density
term (Am) leads to a positive contribution to the
enthalpy of mixing. The enthalpy of formation of
an intermetallic compound can thus be expressed in
a simplified form by the equation

A¢HSs = —A(Ex — Eg)” + B(Am) (24)

Miedema identifies the first term, following the
model of metallic contact potentials in free electron
theory, with the difference in work function for the two
metals, and shows that the electron density term can be
related to the respective compressibilities of the
metals forming the compound

m=B/V

where V is the molar volume.

Miedema et al. [35-39] have published a series of
papers in which they have demonstrated that experi-
mental enthalpies of formation for solid and liquid
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Fig. 9. Enthalpies of formation of carbides and nitrides with the cubic NaCl structure plotted using the Pettifor arrangement of the Periodic Table.

binary alloys of transition metals can be accounted for
within reasonable limits. The expression they derive
for the enthalpy of formation is

AfH =~ [—Pe(A¢*) + Qo(Anyd)?] (25)

where P and Q are constants having nearly the same
values for widely different alloy systems (e.g. inter-
metallic compounds of two transition metals or liquid
alloys of two non-transition metals), ¢* is obtained by
adjusting the experimental work functions, and 7 is
obtained from estimates of the charge density at the
Wigner—Seitz boundary.

For regular liquid or solid solutions, the concentra-
tion dependence of AH contains the product cjcj.
For ordered compounds, the area of contact between

dissimilar cells is larger than the statistical value. Near
the equiatomic composition, experimental results
show that the ordering energy of alloys (f(c},c}))
is, quite generally, of the order of 1/3 of the total
enthalpy of formation.

Consideration of the physical origin of the two
terms in Eq. (25) suggests that in addition to the
ordering function, there is another factor, g(ca,cg),
that varies somewhat with the relative concentration of
the two metals. Concentration dependent values of
A¢H can thus be derived using the more general
expression

AtH[No = f(ch, cy)-8(ca, cB)[—Pe(A¢")?
+ Qo(Any) (26)
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Fig. 10. Enthalpies of formation of transition metal silicides, MsSi3, with the D8, structure plotted using the Pettifor arrangement of the

Periodic Table.

Ny is Avogadro’s number, A¢H is expressed per gram
atom of alloy, and

glea, cs) = 2(caVy + s V) (V2 + Vi),

27)

Table 13 presents the values of ¢*, n{@ and Vri/ 3

selected by Miedema et al. [26] and used in calculating
enthalpies of formation.

The method due to Miedema, described above,
has the great advantage that enthalpies of forma-
tion can be calculated for many alloy systems
where no experimental information whatsoever is
available.

3.3. Properties of mixing ‘free volume’ theory

In a recent series of papers [40-42], Tanaka,
Gokcen and Morita have described how the thermo-
dynamic properties of mixing in liquid binary alloys
can be derived from physical properties using the ‘free
volume’ theory proposed by Shimoji and Niwa [43],
the first approximation of the regular solution model
as described by Gokcen [44], and a consideration of
the configuration and vibration of the atoms in the
alloys.

Assuming that an atom vibrates harmonically in its
cell surrounded by its nearest-neighbours, the follow-
ing equations may be used to calculate the excess

properties of mixing:
AGE = AH — TASE (28)
AH = NapQag/Z (29)
with
Nap = ZNoXaXp(1 — XaXpQap/kT) (30)

ASE = AS::Eonf + AS]ngonconf (31)
AS]cj:onf = _XI%;X]%QE\B/ZI(TQ (32)
ASEOnconf = 3/Zk‘lvo{)(AIII(VA/VAA)
+ Xgln(vg/veg)}
= 3/2kN0{2XAlII(LA/LAA)
+ 2XgIn(Lg /Lgp) +Xaln(Uaa/Ua)
+ XgIn(Ugg/Us)} (33)

where Nap is the number of A-B pairs; Z the co-
ordination number; (2,5 the exchange energy; k the
Boltzman’s constant; N, the Avogadro number; X5, Xg
are mol fractions; v, vg, vaa and vgg are free
volumes; L, Lg, Laa and Lgg are the distances which
the interatomic potential extends in a cell; and U, Usg,
Uana and Ugp are the potential energy depths in a cell.
In these equations, the suffices AA and BB denote
pure elements and A and B the states of A and B atoms
in an A-B alloy.

By differentiation and rearrangement, the above
equations can also be used to derive partial thermo-
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Table 13

Parameters of Eq. (1) to be used in calculating enthalpies of formation of alloys

Metal 6" (V) s V[ (cm?) Metal ¢ (V) s Vi (em?)
Sc 325 127 6.1 Li 2.85 0.98 55
Ti 3.65 1.47 48 Na 2.70 0.82 83
\% 425 1.64 4.1 K 225 0.65 12.8
Cr 465 1.73 3.7 Rb 2.10 0.60 14.6
Mn 445 1.61 3.8 Cs 1.95 0.55 16.8
Fe 493 1.77 3.7 Cu 455 1.47 3.7
Co 5.10 175 35 Ag 445 139 47
Ni 5.20 175 35 Au 5.15 1.57 47
Y 3.20 121 73 Ca 2.55 091 8.8
Zr 3.40 1.39 5.8 Sr 2.40 0.84 102
Nb 4.00 1.62 49 Ba 232 0.81 11.3
Mo 4.65 1.77 44 Be 420 1.60 2.9
Te 5.30 1.81 42 Mg 3.45 1.17 5.8
Ru 5.40 1.83 41 Zn 4.10 132 44
Rh 5.40 176 4.1 cd 405 1.24 55
Pd 5.45 1.67 43 Hg 4.20 1.24 5.8
La 3.05 1.09 8.0 Al 420 139 46
Hf 3.55 1.43 5.6 Ga 4.10 131 52
Ta 405 1.63 49 In 3.90 1.17 6.3
w 4.80 1.81 45 TI 3.90 112 6.6
Re 5.40 1.86 43 Sn 4.15 1.24 6.4
Os 5.40 1.85 42 Pb 4.10 115 6.9
Ir 555 1.83 42 Sb 4.40 1.26 6.6
Pt 5.65 1.78 44 Bi 415 1.16 7.2
Th 3.30 1.28 73 Si 470 150 42
U 405 156 5.6 Ge 455 1.37 4.6
Pu 3.80 1.44 52 As 4.80 1.44 5.2

dynamic properties of mixing:
AHg = Qap (34)
ASy = AS® = 3/2kNo[(Laa — Les)’]/LaaLes
+ {4UaaUsp — 2248 (Uaa + Uss)
— (Uaa + Usg)*}/2UraUss} (35)
where Uxa and Ugp can be obtained from:
Ui = —20°L2Mvi /Ny (i=AorB)  (36)

with M;; being the atomic weight, L;; half the nearest-
neighbour distance, given by

Li = 1/2(2";i/No)'*  (i=AorB)  (37)

where v;; is the molar volume. v;; is the frequency of an
atom, which can be evaluated using the following
equation proposed by lida and Guthrie [45]:

Vi = 2.8 % 10]2/3ii(Tm’ii/MiiV?i/3)1/2

(i=A or B) (38)

where T,,y; is the melting point and (;; the coefficient
required to transform the solid-state frequency to that
in the liquid state at the melting point. Value of 3;; can
be obtained from experimental data for the surface
tension of the pure elements in the liquid state.

It can be seen from the above equations that, if the
partial enthalpy of mixing is known, both the partial
excess entropy and partial excess Gibbs energy of
mixing can be calculated. Using these equations,
Tanaka et al. have demonstrated the relation between
enthalpy and excess entropy of mixing in liquid binary
alloys. The necessary enthalpy of mixing data for the
calculations were obtained both from published
experimental values and also by use of the Miedema
method described above. In addition, an equation
allowing for the influence of temperature on the
enthalpy—entropy relation was derived.

Tanaka et al. have used the free volume theory to
calculate successfully activity coefficients of solutes at
infinite dilution in liquid iron-base binary alloys [42].
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Fig. 11. Calculated partial excess Gibbs energy values for solutes
in dilute solution in liquid Fe-base binary alloys.

Some results of these calculations are shown in
Fig. 11.

3.4. Correlation methods

In the CALPHAD modelling of phase diagrams as
well as in analysing the cohesive and thermal beha-
viour of materials, it is necessary to have information
on various kinds of properties. The requirements have
been discussed, in particular, in a series of papers by
Fernandez Guillermet and Grimvall [46-48] and a
summarised form is presented in the Group 5 report
contained in ‘Proceedings of the 1995 Ringberg Work-
shop on Unary Data’ [49]. The requirements are of
three kinds:

3.4.1. Thermophysical properties of single phases

— Molar volume (V,,) or average volume per atom (£2)
— Isothermal (Bt) and isentropic (Bs) bulk moduli;
other elastic E constants, and the ‘elastic’ Debye
temperature (0g)

— The pressure derivative (B'=(0B/OT)t) and the
temperature of the bulk modulus (0B/0T)

— The thermal expansion coefficient a=1/V,(OV,,/

ODp

— The heat capacity at constant pressure (Cp) as a
function of temperature; in particular, the low
temperature Cp values and the related Debye
temperature (fc) and electronic heat capacity (7.)
— The total entropy (St) as a function of
temperature, and the related entropy Debye
temperature (6s)

3.4.2. Thermophysical properties of two phases

— Equilibrium temperatures for solid—solid phase
equilibria (7;), enthalpies (AH,) and entropies
(AS,) of transformation

— Equilibrium temperatures for solid-liquid equili-
brium (T%,), enthalpies (AHj,) and entropies
(ASsys) of fusion

— Enthalpies of formation (AfH(Z)QS) of compounds
at 298 K

— Cohesive energies (E.o,) of elements (Me) and
compounds (MeX), i.e. the enthalpy changes for
the reactions

Me(st) — Me(g)
MeX(st) — Me(g) + X(g)

at 0 K and 1 atm, respectively. In these equations
‘st” and ‘g’ refer to the stable modification and the
gaseous monoatomic state, respectively.

For many stable phases, the above properties are
known from experimental measurements and can be
obtained from standard evaluations of thermodynamic
data. However, in the case of metastable phases,
usually there are no experimental data available and
methods to predict these quantities and to judge the
reliability of existing estimates are needed. A brief
summary of the predictive methods, based on estab-
lished trends in the thermodynamic quantities of ele-
ments and compounds, is given here.

3.4.3. Properties related to cohesion and the
equation of state (EOS) of solids

Many of the properties reviewed in the previous
section depend upon the bonding behaviour of the
solid. The way in which they co-vary has been studied
both empirically and theoretically. Examples of the
empirical approach are the relations between Bt and
1/€2, and that between E_,, and Bt which have been
established for elements and compounds. Additional



20 P.J. Spencer/Thermochimica Acta 314 (1998) 1-21

relations are provided by models of the binding energy
vs. distance function. For instance, the Lennard—Jones
type of expression E(Q2)=a/Q)"+b/QY" predicts that the
dimensionless ratio S=FE /B2 depends only on the
parameters ‘m’ and ‘n’. The EOS developed by Rose
et al.[50] predicts that the pressure derivative B} is
related in a simple way to the quantity .

A useful combination of thermodynamic quantities
is the well-known Giihneisen parameter

Y6 = aVuBr/Cy (39

v5(298) has been shown to remain fairly constant
within a given class of substances.

Recently, it has been shown [46—48] that correla-
tions involving the vibrational entropy of elements and
compounds can be established by using the effective
force constant ks, defined by

ks = (kpfs/h)*Mes (40)

where Mg is the logarithmically averaged atomic
mass in a formula unit of the compound, and the
characteristic energy Eg

Eg = ksQ?/3 41)

which is related to the lattice vibrations. It has been
found that Eg co-varies with A¢HYg and E.p, in the
case of transition metal carbides and nitrides.

4. Neural network scanning of databases

There are thousands of compounds for which ther-
modynamic data are unavailable. With the present
extensive computer databases it should be possible
to estimate missing values relatively easily by making
use of the computer to exploit trends in the Periodic
Table and to develop empirical correlations among
properties. As discussed at the 1995 Ringberg Work-
shop on Unary Data [49], what is required is:

1. The addition of some other properties to our data-
bases. These properties, although of importance in
their own right, should be added because they can
act as independent variables in the correlations.
These include, in addition to those listed above:

— Electronegativities
— Jonic and atomic radii

— A description of the structural units involved
(ex: K»SO, contains K and SO, ions)
— A description of structure and bond types.

2. The development of software which can readily
access the data for a class of compounds, set up
property spreadsheets, and search for multivariate
correlations. Physical principles would guide the
user in the choice of variables, etc.

3. The development of neural networks accessing the
above databases. The user would present the pro-
gram with a property to be estimated, along with a
number of other properties with which it might be
correlated. Some idea of the expected correlations
would also be given as a starting point. The net-
work would then learn (i.e. refine the correlations)
by looking at all compounds within a class of
compounds from the database. As new data on a
compound or data on new compounds became
available, they could be fed to the program to
refine the neural network. With a neural network
for each property, we would have a true expert
system for property estimations.

Many of the estimation methods described in this
paper are indeed currently being programmed and
linked for use with the SGTE Databases as a source
of reference data wherever needed. They will be
available as a software product shortly [51].
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