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Abstract

The ever growing need to develop new materials for speci®c applications is leading to increased demand for thermodynamic

values which have not been measured so far. This necessitates the use of estimated values for evaluating the feasibility or

suitability of different proposed processes for producing materials with particular compositions and properties. Methods for

estimating thermodynamic properties of inorganic and metallic substances are presented in this paper. A general

categorization into estimation methods for heat capacities, entropies and enthalpies of formation has been used. Some

comparisons of estimated values with experimental data are presented and possible future developments in estimation

techniques are discussed. # 1998 Elsevier Science B.V.
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1. Introduction

The present-day availability of advanced, user-

friendly commercial software considerably facilitates

the thermodynamic calculation of reaction equilibria,

even invery complex systems. However, published data

for many substances and systems of practical interest

are still not complete, especially in the ever-widening

®eld of materials chemistry, where reliable thermo-

dynamic data not only for stable but also for meta-

stable phases are becoming increasingly important.

When such data are lacking, it is necessary to

estimate the missing values with reasonable accuracy.

For stoichiometric inorganic compounds, this task is not

as dif®cult as it might appear, for many of the prin-

ciples which are applicable have been well established

for a considerable time. For solution phases, however,

methods available are generally more complex, and

software incorporating various solution models has

been written with the aim of providing missing data

from the more limited information available.

Experience is required to enable the best choice of

estimation method to be made in each particular case,

and if necessary to develop new methods. A selection

of current methods used to estimate thermodynamic

values for both pure stoichiometric substances and

solution phases of different types, as well as some

examples of their application, are given in this paper.

Due to space limitation, only condensed phases are

discussed. Further examples and more detailed

descriptions of individual estimation methods can

be found in Chapter 3 of Ref. [1].

2. Pure inorganic substances

2.1. Heat capacities

For most materials applications, it is suf®cient to be

able to estimate heat capacities at room temperature
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and above. Heat capacities at lower temperatures will

not be considered here.

2.1.1. Solids

Kellogg [2] originally suggested a method for esti-

mating the heat capacity of predominantly ionic, solid

compounds at 298 K. It is analogous to Latimer's

method for the estimation of standard entropies [3]

and consists in adding together contributions from the

cationic and anionic groups in the compound (here

denoted as �(cat) and �(an)). Using the then available

compiled experimental data, Kellogg derived average

values of �(cat) for the metallic ions independent of

their valency and of �(an) for the anions, depending on

valency. The estimated heat capacities at 298 K were

then obtained by summing the various contributions,

i.e. Cp(298 K)���.
Kubaschewski and UÈ nal [4] revised the tables of

Kellogg from an analysis of a larger set of experi-

mental Cp(298 K) data. Within the scatter of the

individual values, and in contrast to Kellog's ®ndings,

it was found possible to represent the �(an) contribu-

tions by a single number for each anion independent of

valency. (See Tables 1 and 2 below).

A further analysis carried out, here, on newer data

for oxide species has enabled still more anions to be

taken into account. As an example, the heat capacity

of 1 mol of calcium aluminate at room temperature

Table 1

Cationic contributions to the heat capacity at 298 K

Metal �(cat) Metal �(cat) Metal �(cat) Metal �(cat)

(J/K) (J/K) (J/K) (J/K)

Ag 25.73 Fe 25.94 Mn 23.43 Sn 23.43

Al 19.66 Ga (20.92) Na 25.94 Sr 25.52

As 25.10 Gd 23.43 Nb 23.01 Ta 23.01

Ba 26.36 Ge 20.08 Nd 24.27 Th 25.52

Be (9.62) Hf 25.52 Ni (27.61) Ti 21.76

Bi 26.78 Hg 25.10 P 14.23 Tl 27.61

Ca 24.69 Ho 23.01 Pb 26.78 U 26.78

Cd 23.01 In 24.27 Pr 24.27 V 22.18

Ce 23.43 Ir (23.85) Rb 26.36 Y (25.10)

Co 28.03 K 25.94 Sb 23.85 Zn 21.76

Cr 23.01 La (25.52) Se 21.34 Zr 23.85

Cs 26.36 Li 19.66 Si Ð

Cu 25.10 Mg 19.66 Sm 25.10

Table 2

Anionic contributions to the heat capacity at 298 K

Anion �(an) Anion �(an) Anion �(an) Anion �(an)

(J/K) (J/K) (J/K) (J/K)

Br 25.94 CO3 58.58 Cr2O4 125.33 Si2O5 106.79

Cl 24.69 NO3 64.43 Fe2O4 126.05 TiO3 74.45

F 22.80 OH 30.96 GeO3 72.08 TiO4 92.52

H 8.79 SO4 76.57 HfO3 78.47 Ti2O5 124.69

I 26.36 Al2O4 98.52 MoO4 92.77 UO4 107.11

O 18.41 Al2O6 135.46 Nb2O6 155.99 VO4 89.2

P (23.43) BO2 41.19 PO4 75.72 V2O6 143.08

S 24.48 B2O6 111.20 SeO3 73.32 V2O7 163.5

Se 26.78 B4O7 134.26 SiO3 62.93 WO4 97.49

Si (24.68) CrO4 92.27 SiO4 78.34 ZrO3 75.06

Te 27.20
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may be estimated:

Cp�298K��3��Ca��1��Al2O6�
�74:07�135:46�209:53 J=K �mol

(1)

which compares with the measured value of 205.43

J/K�mol.

The heat capacity of solids at the melting point is

roughly the same, per ion or atom, for all compounds.

Kelley [5] took this value to be 29.3 J/K�mol.

Kubaschewski [4], with more recent experimental

evidence, increased this average to (30.3�2.1) J/

K�mol. Not included in the evaluation of the mean

deviation were the data for those substances which

undergo a solid±solid transformation below the melt-

ing point, nor for those that have a melting point below

ca. 420 K. If one includes the ®rst transformation

rather than considering the melting point alone, the

average value turns out to be closer to Kelley's original

value 29.3 J/K�mol ± a point that should be noted.

These observations taken together with the values in

Tables 1 and 2 may be used to recommend the estima-

tion of the constants in a heat-capacity equation of the

type

Cp � a� b� 10ÿ3T � c� 105Tÿ2 (2)

Earlier estimated Cp vs. T relations [5] were often a

two-term linear expression. However, the introduction

of a Tÿ2 term enables the pronounced curvature at

lower temperatures (above 298 K) and around the

Debye temperature to be described more accurately.

When values of c in Eq. (2) as obtained from different

experiments are compiled, they show a considerable

scatter, due more to the inaccuracy of the differentia-

tion of experimental enthalpy data than to the actual

relations. A mean value of c/n�ÿ4.12 J/K was

obtained from the Tÿ2 terms of some 200 inorganic

substances [4].

Expressions for the constants in Eq. (2) were

derived [4] as follows:

b � 6:125n� 105nTm ÿ��
Tm10ÿ3 ÿ 0:298

(4)

c � ÿ4:12n (5)

Here, Tm is the absolute melting temperature of the

compound and n the number of atoms in the molecule.

If Cp(298 K) is known from low-temperature mea-

surements, the experimental value should, of course,

be used instead of ��, the estimated value. Adjust-

ment of the estimated equation can also be made if the

heat capacities of compounds similar in mass and

chemical nature to the one under consideration are

known. Although the average value of Cp(Tm)/n

increases somewhat with molecular weight, the scatter

in the data and the smallness of the effect make it

dif®cult to justify a two-term expression in terms of

log M.

Hoch [6±9] has shown that the high-temperature

heat-capacity data of solids can be represented by the

equation

Cp � 3RF��D=T� � bT � dT3 (6)

where F(�D/T) is the Debye function, b is equivalent to

the electronic heat capacity, and d re¯ects only the

contribution of the anharmonic vibrations within the

lattice. The equation is valid in the temperature range

between �D and the melting point. By plotting the

experimental heat-capacity data for a number of

metals and ceramics using Eq. (6) in the rearranged

form

Cp ÿ 3RF��D=T�
T

� b� dT3 (7)

Hoch was able to derive values for the electronic

heat capacity, b, and for the heat capacity due to the

anharmonic vibrations, d, from the intercepts and

slopes, respectively, of the linear plots. For insulating

materials, b�0 and the line passes through the origin.

Using this approach, a very satisfactory description of

the heat capacities of Nb, Ta, Cr, Re, Mo, W, Cu, Al,

UO2, UO2�x, US, UN, UC, and Al2O3 was obtained.

Eq. (7), thus, appears useful as a general equation for

estimating the heat-capacity data for solids, where

values are scarce or rather unreliable.

Lacking any information about the heat capacity of

a compound, Cp may be assumed to be zero for

condensed reactions without affecting most calcula-

tions too seriously. This postulate regarding the addi-

a � Tm � 10ÿ3���� 1:125n� ÿ 0:298n� 105Tm ÿ 2:16n

Tm � 10ÿ3 ÿ 0:298
(3)
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tivity of the heat capacities of the elements or the

reactants to give the heat capacities of the compound

or the products in a reaction is known as Neumann and

Kopp's rule. It has been found to be approximately

valid for a large number of reactions and so has been

used frequently. Neumann±Kopp's rule holds good,

especially for alloy phases.

2.1.2. Liquids

The heat capacities of molten inorganic substances

do not differ greatly from those of the corresponding

solid materials and the heat capacity of an inorganic

liquid amounts from 29.3 to ca. 33.5 J/K�mol, to some

extent depending on the atomic weight of the sub-

stance concerned. The value 31.4 may be used if

measurements are not available; alternatively, the

atomic heats of the liquid constituent elements may

be taken additively.

Hoch and Venardakis, in a series of publications,

e.g. [10,11], have analysed experimental heat-capacity

data for a number of liquid metals, oxides and halides.

They suggest that the experimental data indicate

anharmonic contributions to the heat capacity of the

liquids close to the melting point. As the temperature

is raised, the anharmonic contributions decrease and

the heat capacity at very high temperatures is made up

of two parts ± a term which corresponds to the Debye

function, and a linear term which can be assigned to

the electronic heat capacity.

The equation derived by Hoch and Venardakis, to

describe the heat capacity of liquid inorganic sub-

stances of various types at high temperatures, is

Cp � 3RF��D=T� � gT � hTÿ2 (8)

where g is the electronic heat capacity and h the

anharmonic term.

Eq. (8) was applied to a wide variety of metallic and

inorganic materials and the ®t was very good in all

cases, although scatter in the published enthalpy data

result in values of the anharmonic contribution, h,

ranging from 4% for Al2O3 to 18% for Fe. Because of

its apparent generality, Eq. (8) seems suitable for

estimating high temperature heat-capacity values for

other liquid metals and inorganic compounds where

the available data are scarce.

More recently, Hoch has shown [12] that, within the

experimental error, the term dh/m�2 is constant, where

d and h correspond to the appropriate constants in the

equations for the heat capacity of solids and liquids,

respectively, and m the mass per atom in a compound.

Thus, if Cp(L) is unknown for a particular compound,

the constant value of dh/m�2 can be used to estimate h,

using the known value of d. The resulting error in

Cp(L) will be relatively small because only a correc-

tion term is calculated. The general constancy of

dh/m�2 is illustrated by the values given in Table 3

for a range of materials.

2.2. Enthalpies and entropies of transformation

A knowledge of enthalpies of transition is more

important than that of variation in heat capacity since

the former have a relatively greater effect on the value

of the Gibbs energy of a substance. Fortunately, the

methods available for estimating their value, given a

knowledge of the molecular structure of the substance,

are fairly reliable.

2.2.1. Fusion

2.2.1.1. Entropy of fusion as a function of tem-

perature of fusion. For the elements, several authors

have reported simple linear correlations between the

entropy of fusion and the melting temperature for

elements of a given structure. Such correlations have

been used, for example, by Saunders, Miodownik and

Dinsdale in producing sets of values for the SGTE

Unary Database [13].

Table 3

Relation between the anharmonic terms for substances in the solid

and liquid state

Substance �D d h Mass/atom dh/m�2

Li 344 4.60E-8 1.41E�6 7 7.81E-8

Pb 105 8.79E-9 1.81E�6 207 6.98E-9

In 109 2.96E-8 3.30E�5 115 7.15E-9

Bi 117 8.28E-9 5.99E�5 209 1.73E-9

Ti(�) 420 4.90E-9 6.11E�7 48 3.53E-8

Fe(gam) 470 1.61E-9 3.26E�7 56 4.25E-9

Mo 380 7.66E-10 4.58E�7 96 2.53E-9

Al2O3 895 5.02E-10 9.54E�7 20 2.93E-9

UO2 590 1.39E-9 2.28E�8 90 1.01E-8

NaCl 1074 8.43E-9 1.28E�7 29 4.97E-8

CaCl2 989 4.14E-9 1.59E�7 37 2.81E-8

MnCl2 882 7.53E-9 7.30E�6 42 2.27E-8

MgF2 1460 1.70E-9 1.85E�7 21 4.59E-9
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The correlations have been tested further here for

inorganic compounds of a given structure and are

found to hold quite well for alkali chlorides, bromides

and iodides with the NaCl structure (Fig. 1) and for

some transition metal monosilicides with the B20

structure (Fig. 2).

2.2.1.2. Enthalpy of fusion from the enthalpy of the

solid at the melting point. Kazragis et al. [14] have

demonstrated for the elements that a simple relation

exists between the enthalpy of fusion and the enthalpy

of the solid at the melting point. These authors also

propose an equation to represent the entropy of

fusion:

�Sfus � S�298 K� � A�0:023a�log Tm ÿ 2:4742�
� 10ÿ3b�Tm ÿ 298�
� 0:005c�1:1261ÿ 105=T2

m�� (9)

Fig. 1. Entropy of fusion vs. temperature of fusion for alkali metal halides.

Fig. 2. Entropy of fusion vs. temperature of fusion for transition metal monosilicides.
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where A is the atomic mass, and a, b and c are

coefficients in the heat-capacity equation

Cp � a� bT � cTÿ2

The correlation �Hm vs. H(Tm)ÿH298 has been

tested both for a group of inorganic compounds

with the same structure (Fig. 3) and for inorganic

compounds with different structures (Fig. 4). The

latter included oxides, halides, carbides, etc.

selected at random. The alkali halides give a very

good linear correlation (Fig. 3) and even though there

is a fairly large scatter from linearity for the different

types of compound plotted together (Fig. 4), the

correlation appears to offer good general

possibilities for estimating unknown enthalpies of

fusion.

For practical applications, enthalpies of fusion are

small compared with the total heat content of a

Fig. 3. Enthalpy of fusion vs. enthalpy at the melting point for alkali metal halides.

Fig. 4. Enthalpy of fusion vs. enthalpy at the melting point for a selection of inorganic compounds with different structures.
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material, and even an approximate estimate is ade-

quate for calculating equilibria involving liquid spe-

cies. For this purpose, entropies and enthalpies of

fusion may be estimated by comparison with similar

compounds in the Periodic Table.

2.3. Entropy and entropy changes

2.3.1. Standard entropies

2.3.1.1. Elements. Although the standard entropies of

nearly all elements in their stable structures are known

more or less accurately, reliable estimation methods

are still required to obtain values of the entropies of

metals in metastable or non-stable structures. If such

information were available, the calculation of alloy

phase equilibria could be significantly refined. From

an analysis of the phase equilibria, in a large number

of binary alloy systems, Kaufman and Bernstein [15]

have derived approximate entropy (and enthalpy)

differences between the stable and metastable

structures of many metallic elements. In particular,

the fcc, bcc and hcp structures have been considered.

Fig. 5 illustrates such differences for the hcp and bcc

structures across the second and third Long Periods of

the Periodic Table.

Thermodynamic data for transformations between

other metastable structures and the stable structures of

the pure elements are still needed as are the equivalent

data for compounds such as oxides, carbides, nitrides,

etc. which play an important role in many areas of

materials technology. Curves such as those shown in

Fig. 5, together with standard entropy values for the

stable phases of the elements, enable standard entropy

data for the elements in metastable structures to be

derived.

2.3.1.2. Inorganic compounds. Latimer's method for

obtaining the standard entropies of predominantly

ionic compounds from the empirically found values

for the anion and cation contributions [3], has been up-

dated by Mills [16] from an analysis of experimental

data for ca. 300 compounds. The overall standard

deviation of the resulting SobsÿSest values, 5.4 J/

Fig. 5. Enthalpy and entropy differences between the hcp(�) and bcc(�) forms of the transition metals.
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K�mol, is smaller than that associated with Latimer's

earlier values. The data presented by Mills, for the

cationic and anionic contributions to the standard

entropy of inorganic compounds of general formula

MXa, were calculated for {M} and n{X} and are listed

in Tables 4 and 5.

To obtain the standard entropy of a solid compound

from these tables, the appropriate value for its cation in

Table 4 is multiplied by the number of cations in the

molecule and added to the anion contribution,

obtained by multiplying the value given in Table 5

according to the charge on the cation by the number of

anions in a formula weight. Thus, the standard entropy

of Al2(SO4)3 is obtained as S(298 K)�(2�23.4)�
(3�64.2)�239.4 J/K�mol.

Although Latimer originally devised the method,

described above, for application to predominantly

ionic compounds, Mills has also demonstrated its

Table 4

`Latimer' entropy contributions {M}

M {M} M {M} M {M} M {M}

(J/K mol) (J/K mol) (J/K mol) (J/K mol)

Ag 57.6�2.5 Fe 35.0�7.8 Nd 60.7 Sm 60.2

Al 23.4�6.7 Ga 40.0�2.5 Ni 35.1�5.0 Sn 58.2�7.6

As 45.2�4.6 Gd 56.0 Os 50�8 Sr 48.7�2.5

Au 58.5�2.0 Ge 49.8�3.3 P 39.5 Ta 53.8

B 23.5 Hf 53.0 Pb 72.2�5.0 Tb 55.2

Ba 62.7�3.0 Hg 59.4�5.4 Pd 45.6�2.2 Tc (42)

Be 12.6�4.2 Ho 56.0 Pm (61) Te 69

Bi 65.0�9.2 In 55.0�6.0 Pr 61.1 Th 59.9�0.8

Ca 39.1�2.9 Ir 50.0 Pt 39.3�1.5 Ti 39.3�8.0

Cd 50.7�3.4 K 46.4�0.8 Rb 59.2�0.5 Tl 72.1�2.7

Ce 61.9 La 62.3 Re 42�6.5 Tm 52.3

Co 34.1�3.3 Li 14.6�3.8 Rh (46) U 64.0�5.2

Cr 32.9�5.9 Lu 51.5 Ru 53�8 V 36.8�6.3

Cs 67.9�3.7 Mg 23.4�4.2 S 48 W 40.9�3.3

Cu 44.0�5.0 Mn 43.8�6.7 Sb 58.9�8.3 Y 50.4�4.2

Dy 54.8 Mo 35.9�5.2 Sc 36.0�1.3 Yb 54.0

Er 54.8 Na 37.2�3.8 Se 60.5 Zn 42.8�6.3

Eu 60.2 Nb 48.1�2.5 Si 35.2 Zr 37.2�9.6

Table 5

`Latimer' entropy contributions n{X} as a function of the charge number, n, of the cations

X n{X} (J/K�mol)

n�1 n�2 n�2.67 n�3 n�4 n�5 n�6

O2ÿ 4.5 2.9 0.4 2.4 3.2 7.1 12.7

S2ÿ 20.6 18.4 20.1 17.0 22.4

Se2ÿ 35.5 32.8 34.1 30.9

Te2ÿ 38.3 41.9 44.1 40.1

Fÿ 20.8 17.0 18.3 20.3 22.4 27.2

Clÿ 36.3 31.8 30.3 34.4 37.2

Brÿ 50.3 45.7 44.7 50.8

Iÿ 58.3 53.5 54.8 53.9 59.4

CO2ÿ
3 62.4 46.6

SO2ÿ
4 80.0 69.5 64.2

NOÿ3 86.0 74.0

NOÿ2 70.6 (61)

SO2ÿ
3 42.9
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usefulness for estimating standard entropy values for

non-ionic compounds. Values of the {X} contributions

to the standard entropy of metallic borides, carbides,

silicides, nitrides, phosphides, arsenides and anti-

monides were derived from the more limited data

available for such substances and the uncertainties

associated with the resulting values were not much

larger than those found for ionic compounds. Mills

attributed this consistency to the similarity of crystal

structure and bonding characteristics for most com-

pounds of an element X with a given stoichiometry.

Table 6 presents the newly updated values obtained

from an analysis of a large number of such compounds

contained in the SGTE Pure Substances Database

[17]. The classi®cation into different MXa types, as

employed by Mills, has been retained here. However,

because of the stoichiometric ranges shown by a

number of the compounds involved, the values pre-

sented in Table 6 should only be considered useful in

providing a guide to the magnitude of missing entropy

data.

Richter and Vreuls [18] have estimated standard

entropy values for solid and molten salts within a

mean deviation of ca. 3.5% based on the linear

dependence of the entropy on the radius, r(c), of

the cation constituent of the compound. The linear

extrapolation to zero of r(c) leads to the anionic

contribution of the molar entropy depending on the

cationic charge. Evaluation of cationic contributions

to the entropy can be made from experimental data

and the method has the advantage that its application is

not restricted to ionic compounds only. Table 7 pre-

Table 6

`Latimer' entropy contributions {X} for metallic borides, carbides, silicides, nitrides, phosphides, arsenides and antimonides

X {X} (J/K mol)

in MX0.33 in MX0.5 in MX0.7�1 in MX in MX2 in MX3

B ÿ(18.4�4) ÿ9.5 ÿ(6.5�3) ÿ(2.1�3)

C ÿ(13.6�10) ÿ(6.5�4) ÿ(9.6�5) (10.8�5)

Si ÿ(4.5�8) (5.8�4) (6.5�4) (12.2�3)

N ÿ16.8(�10) ÿ1.5 ÿ(4.6�5) (20�5)

P ÿ(2.2�3) (6.3�5) (7.2�5) (10.6�5)

As (43.8�6) (23.0�8) (27.8�10)

Sb (40�10) (26.6�8) (40.4�5) (36�8)

Table 7

Anionic contributions to the entropy of solid salts at 298 K as a function of cation charge

Anion S(298 K) (J/K mol) Monovalent cation Divalent cation

Monovalent cation Divalent cation Anion cation

Fÿ 8.9 18.6 Cr2O2ÿ
4 Ð 84.7

Clÿ 37.8 30.5 Fe2O2ÿ
4 Ð 96.3

Brÿ 51.6 47.0 MoO2ÿ
4 Ð 84.3

Iÿ 65.9 53.9 O2ÿ 6.4 2.5

Hÿ 2.1 Ð O2ÿ
2 21.9 Ð

OHÿ 25.1 18.3 Oÿ2 76.0 Ð

NOÿ3 83.6 66.1 PO3ÿ
4 Ð 60.3

ClOÿ4 105.8 Ð S2ÿ 31.3 18.1

AlF3ÿ
6 114.2 Ð SiO2ÿ

3 43.4 39.9

AlCl3ÿ
6 229.0 Ð SiO4ÿ

4 Ð 40.2

Al2O2ÿ
4 Ð 57.0 SO2ÿ

4 84.8 68.7

B2O2ÿ
4 Ð 61.8 TiO2ÿ

3 Ð 51.6

B4O2ÿ
7 117.6 94.8 TiO4ÿ

4 Ð 62.6

B6O2ÿ
10 156.9 Ð WO2ÿ

4 Ð 85.6

CO2ÿ
3 63.3 44.4
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sents the anionic contribution to the standard entropy

of solid salts at 298 K as a function of the cation charge

and Table 8 presents the cationic contributions as

evaluated by Richter and Vreuls.

2.3.2. Entropies of mixing of non-metallic solution

phases

In deriving entropies of mixing for non-metallic

solutions, it should always be remembered that a

mixture of cations contains not only the con®gura-

tional entropy arising from the random distribution of

cations on the cation sub-lattice, but also a thermal

entropy term related to heat capacity changes. For

example, in the formation of spinels from their con-

stituent oxides, Jacob and Alcock [19] found that the

con®gurational term is always accompanied by a

thermal entropy of formation which must be added

to the con®gurational entropy to obtain the total

entropy of formation. Such thermal terms arising from

the changes in the vibrational structure of the cations

and their surrounding oxygen ions on formation of an

inter-oxide compound should always be considered.

In the spinel studies, it was found that the thermal

entropy of formation of spinels, such as Fe3O4,

FeAl2O4, FeV2O4 and FeCr2O4 could be represented

by the equation

�fS � ÿ7:32��SM J=mol (10)

where ÿ7.32 entropy units originate from the non-

con®gurational source.

2.4. Enthalpies of formation

2.4.1. General

Information on the enthalpies of formation of the

substances taking part in a reaction are essential to

obtain reliable evaluation of Gibbs energy values, and

hence allow calculation of particular chemical equili-

bria of interest. However, the methods available for

estimating enthalpies of formation are often not very

exact and apply to a relatively small group of com-

pounds only. Consequently, all possible methods

should be used to estimate a single value. Since the

variation of enthalpies of formation with temperature

is generally small, the values can often be assumed to

be temperature-independent, provided no phase trans-

formation takes place.

2.4.1.1. Empirical relations. In a series of papers,

Hisham and Benson [22±29] have compiled

information on the enthalpies of formation of a

wide variety of inorganic compounds and derived

empirical relations to enable known values to be

calculated to within close limits, and missing values

to be estimated, for particular groups of compounds.

Some of the equations that have been derived are

presented below.

2.4.2. Polyvalent metal oxides [22]

For polyvalent oxides, MOz, which have three or

more well-de®ned stoichiometric valence states, the

following relation holds:

ÿ�fH
0
298 � az� bz2 (11)

The authors present values of a and b for 15 metals

2.4.3. Metal oxyhalide compounds [24]

Examination of 35 solid metal oxyhalides, MOxXy,

showed that their standard enthalpies of formation can

be correlated quantitatively with the enthalpies of

formation of the corresponding oxides and halides

of the same oxidation states by the equation:

�fH
0
298�MOxXy�
� a��2x=z��fH

0
298�MOz=2�

� �y=z��fH
0
298�MXz�� � C (12)

where z�2x�y is the formal oxidation state of the

metal and MOz/2 and MXz are the corresponding oxide

Table 8

Cationic contributions to the entropy of solid salts at 298 K

Cation S(298 K) Cation S(298 K)

(J/K mol) (J/K mol)

Ag� 55.3 Li� 19.7

Ba2� 59.3 Mg2� 26.7

Be2� 13.2 Mn2� 48.1

Ca2� 39.5 Na� 34.0

Cd2� 51.3 Ni2� 33.3

Co2� 44.8 Pb2� 72.7

Cs� 62.1 Rb� 55.9

Cu2� 41.5 Sn2� 60.9

Fe2� 52.2 Sr2� 52.9

Hg2� 67.1 Tl� 68.3

K� 46.4 Zn2� 47.9
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and halide of the same oxidation state z. C is a

correction factor in kJ/mol.

For main and ®rst transition-metal compounds, a�1

and C�0. For trivalent-state lanthanides, a�2.155�
0.12 and C�1078.6�5.4 or 1047.7�5.0 kJ/mol. For

tetravalent oxychlorides, a�1 and C�20.9 kJ/mol.

For penta- and hexavalent compounds, a�1 and

C�0.

2.4.4. Double salts with the formula MXaYb [25]

The standard enthalpies of formation of double salts

of the type MXaYb can be calculated additively from

the enthalpies of formation of their binary salts MXc

and MYd.

For divalent metals the relation takes the form:

�fH
0
298�MXY��1=2�fH

0
298�MX2�

� 1=2�fH
0
298�MY2��C (13)

where C�ÿ13.4 or ÿ17.6 kJ/mol

From an analysis of the more limited amount of

data, available for trivalent and tetravalent metals, a

simple additivity relation is again found

�fH
0
298�MXaYb�
� �ax=z��fH

0
298�MXz=x�

� �by=z��fH
0
298�MYz=y� � C (14)

where x, y, and z are the formal valencies of X, Y, and

M, respectively, i.e. z�ax�by, and C�0.

2.4.5. Oxides, carbonates, sulphates, hydroxides and

nitrates [26]

The standard enthalpies of formation of any three

compounds for a particular metal oxidation state can

be correlated quantitatively by two-parameter linear

equations.

For mono- and divalent compounds

�fH
0
298�SO4� ÿ�fH

0
298�O�

� 1:36��fH
0
298�CO3� ÿ�fH

0
298�O��

ÿ 13:4 kJ=mol (15)

For monovalent compounds

�fH
0
298�OH� ÿ�fH

0
298�O�

� 0:463��fH
0
298�SO4� ÿ�fH

0
298�O��

ÿ 9:6 kJ=mol (16)

and

�fH
0
298�NO3� ÿ�fH298�O�
� 1:02��fH

0
298�SO4� ÿ�fH

0
298�O��

ÿ 234:7 kJ=mol (17)

For divalent compounds

�fH
0
298�OH� ÿ�fH

0
298�O�

� 0:318��fH
0
298�SO4� ÿ�fH

0
298�O��

� 94:6 kJ=mol (18)

and

�fH
0
298�NO3� ÿ�fH

0
298�O�

� 1:025��fH
0
298�SO4� ÿ�fH

0
298�O��

ÿ 500:4 kJ=mol (19)

where �fH
0
298�O�, �fH

0
298�SO4�, �fH

0
298�CO3�,

�fH
0
298�NO3�, and �fH

0
298�OH� are the standard

enthalpies of formation in kJ/mol of the oxide, sul-

phate, carbonate, nitrate, and hydroxide, respectively,

of the metal.

2.4.6. Halides [28]

The standard enthalpies of formation of any three

solid halides, MXn, MYn, and MZn of any metal M

with formal valence n (including cations such as

NH�4 ), can be correlated by the general equation

�fH
0
298�MXn� ÿ�fH

0
298�MYn�

� a��fH
0
298�MXn� ÿ�fH

0
298�MZn�� � bn

(20)

The coef®cients a and b are the same for any

particular main or subgroup of a given valence state.

Values of b vary over a wide range, but a is always

close to unity.

For any given group, maximum deviations are

found to be no more than �12.5 kJ/mol.

2.4.6.1. Enthalpies of formation of double oxides.

Many methods are presented in the literature for

estimating enthalpies of formation of double oxides.

These are becoming increasingly important as new

materials are developed. Some of the methods are

specific to small groups of materials, others can be

applied to a wider range of substances. Slough [30] has

made a comparison of the methods available for
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estimating such values and has tabulated the results

obtained. A summary of some of these methods is

presented below.

2.4.7. Plots involving the ratio of ionic charge to

ionic radius

Using the basic assumption that van der Waals

and polarization forces are of major importance in

determining the enthalpy change on reaction of

two different oxides, Slough has developed a useful

procedure for estimating this change [31]. He found

that for many double oxide combinations, good

linear plots of C/R against �fH
0
298 from the com-

ponent oxides were obtained. (C is the charge

number and R the crystal ionic radius of the cation.)

Ferrates, titanates, tungstates, vanadates, zirconates,

silicates, selenites and borates were all analysed

in this way. Deviations of individual points from

the linear plots were usually �20 kJ/mol. Fig. 6

illustrates plots obtained for certain borates and

silicates.

Since the ionic charge of the cation is of major

importance in applying this method, double oxides,

formed from metal oxides in which covalent bonding

predominates (e.g. BeO, Ag2O, or Cu2O), do not ®t

into the plots concerned.

2.4.8. Statistical analysis methods

Schwitzgebel et al. [32] have produced a general

relation for the estimation of enthalpies of formation

of double oxides based on a statistical correlation of

existing data. This relation takes the form

�fH
0
298 kJ=mol � ÿ4:184b�K� ÿ A��n� (21)

where �fH
0
298 is the enthalpy of formation from the

component oxides, K� represents the base strength of

the oxide � or alternatively, the stability of the cation

in the double oxide combination, A� represents the

acid strength of oxide �. The exponent n� is taken to

be a characteristic of the anion resulting from the

double oxide combination. The cation and anion

parameter values given by Schwitzgebel et al. are

reproduced in Tables 9 and 10.

Fig. 6. Enthalpy of formation of certain borates and silicates as a function of the cation charge to radius ratio.

Table 9

Cation parameters

� K� � K�

Ag� 8.97 Li� 15.39

Al3� 4.37 Mg2� 8.68

Ba2� 18.18 Mn2� 9.10

Be2� 4.93 Mn3� 5.47

Bi3� 7.75 Na� 19.97

Ca2� 13.10 Ni2� 7.46

Cd2� 8.53 Pb2� 9.34

Ce4� 9.05 Rb� 24.60

Co2� 8.95 Sb3� 3.24

Cs� 25.31 Sn4� 1.41

Cu� 4.08 Sr2� 15.74

Cu2� 4.53 Th4� 7.73

Fe2� 8.25 U4� 6.79

Fe3� 4.29 Zn2� 6.56

K� 23.73 Zr4� 9.87
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2.4.8.1. Additivity of bond energies ± `Le Van's

method'. Le Van [33] has described a method for

estimating enthalpies of formation of oxyacids

based essentially upon the assumption of additivity

of bond energies. This allows �fH
0
298 for an oxyacid

salt to be expressed in terms of two characteristic

parameters, P and Q, as given by the relation

�fH
0
298 kJ=mol � �n�p�P� n�q�Q
� 4:184�4�n�q��2 � 4:184�n�p��2� (22)

where n(p) represents the number of anions, n(q) the

number of cations, and the characteristic parameters P

and Q refer to anion and cation, respectively. Values of

the parameters P and Q are given in Tables 11 and 12.

2.4.8.2. Comparison of data for similar compounds.

Slobodin et al. [34] calculated enthalpies of formation

for selected ortho-vanadates from a comparison of

�fH
0
298 values for various compounds with the same

Table 10

Anion parameters

� A� n�

SO2ÿ
4 ÿ9.77 1.45

CO2ÿ
3 0.00 1.43

SO2ÿ
3 ÿ2.60 1.44

Fe2O2ÿ
4 7.45 1.39

CrO2ÿ
4 0.13 1.43

V2O2ÿ
6 1.55 1.47

TiO2ÿ
3 5.13 1.40

WO2ÿ
4 0.87 1.48

MoO2ÿ
4 ÿ2.87 1.38

Al2O2ÿ
4 5.24 1.38

Table 11

Values of the parameter Q

Cation Q Cation Q Cation Q Cation Q

Ag� ÿ92 Cs� ÿ444 Li� ÿ452 Sb3� ÿ393

Al3� ÿ916 Cu� ÿ84 Mg2� ÿ741 Sn2� ÿ406

Ba2� ÿ883 Cu2� ÿ213 Mn2� ÿ523 Sn4� ÿ544

Be2� ÿ653 Fe2� ÿ372 Na� ÿ448 Sr2� ÿ862

Bi3� ÿ469 Fe3� ÿ423 NH4� ÿ326 Th4� ÿ1435

Ca2� ÿ858 Hg� ÿ121 Ni2� ÿ331 Ti2� ÿ544

Cd2� ÿ385 Hg2� ÿ167 Pb2� ÿ352 Tl� ÿ205

Ce4� ÿ1239 In3� ÿ649 Pd2� ÿ205 U4� ÿ958

Co2� ÿ343 K� ÿ448 Ra2� ÿ891 UO22� ÿ1292

Cr2� ÿ728 La3� ÿ1213 Rb� ÿ444 Zn2� ÿ439

Table 12

Values of the parameter P

Anion P Anion P Anion P Anion P

Al2O2ÿ
4 ÿ1494 CrOÿ4 ÿ565 H3P2Oÿ7 ÿ2121 TiO2ÿ

3 ÿ795

AsO3ÿ
4 ÿ460 Cr2O2ÿ

4 ÿ1075 SO2ÿ
4 ÿ569 UO2ÿ

4 ÿ1318

HAsO2ÿ
4 ÿ607 IOÿ3 ÿ109 ReOÿ4 ÿ657 VOÿ3 ÿ762

H2AsOÿ4 ÿ753 MnOÿ4 ÿ393 SeO2ÿ
4 ÿ305 VO2ÿ

4 ÿ975

BOÿ2 ÿ653 MoO2ÿ
4 ÿ732 SiO2ÿ

3 ÿ795 WO2ÿ
4 ÿ845

BOÿ3 ÿ515 NOÿ2 �29 SnO2ÿ
3 ÿ381 ZnO2ÿ

2 ÿ13

B4O2ÿ
7 ÿ2853 NOÿ3 ÿ67 SO2ÿ

3 ÿ314

BrOÿ3 �84 PbO2ÿ
3 ÿ84 HSOÿ3 ÿ444

ClOÿ �50 PO4ÿ4 ÿ854 HSOÿ4 ÿ724

ClOÿ2 �63 HPO2ÿ
4 ÿ983 S2O2ÿ

3 ÿ314 HCOOÿ ÿ285

ClOÿ3 �34 H2POÿ4 ÿ1146 S2O2ÿ
5 ÿ644 CH3COOÿ ÿ326

ClOÿ4 �21 HPO2ÿ
3 ÿ623 S2O2ÿ

6 ÿ908 CH3CH2COOÿ ÿ352

CNOÿ ÿ13 H2POÿ3 ÿ799 S2O2ÿ
8 ÿ1105

CO2ÿ
3 ÿ356 P2O4ÿ

7 ÿ1766 S4O2ÿ
6 ÿ950

HCOÿ3 ÿ544 H2P2O2ÿ
7 ÿ2004 SrO2ÿ

3 ÿ335
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cation and the ortho-, EO4(n-), anion. Thus the

sulphates, phosphates, molybdates, and

orthovanadates of di- and trivalent elements were

chosen for comparison, and calculations were made

using the relation

A � ��fH
0
298=rm (23)

where ��fH
0
298 is the difference between the

experimental and additive value for formation of the

particular compound from the corresponding oxides

(referred to one EO4(n-) group), r the radius of the

cation, and m the number of cations per EO4(n-)

group.

Slobodin et al. found, for the four types of salt

selected, and using Ba2�, Ca2�, Mg2�, Sr2�, Fe2�,

Ni2�, Al3�, Cr3�, Fe3� as the cations concerned, that

the values of A for compounds with the same cation

vary almost linearly and that the straight lines joining

the values of A for compounds with the same cation

are parallel. (see Fig. 7). This enables missing values

to be estimated with a fair degree of certainty. The

method can presumably be applied in a similar manner

to other compounds.

3. Alloys

It is important to emphasise that an alloy system

must be considered as a whole when evaluating ther-

mochemical data critically. Consideration of phases

individually, and not in relation to neighbouring

phases, has often led to inconsistencies when the

resulting data are used to calculate phase equilibria

in a given system. Several methods of approximating

the thermodynamic properties of alloy phases are

described in Chapters 1 and 4 of [1]. Here, some more

recent published methods for calculating thermo-

dynamic values of alloys from available physical

property information are presented.

3.1. Homologous series

A certain relationship appears to exist between the

enthalpy of formation of metal compounds and the

atomic number of the metal in compounds of the same

stoichiometric proportion and the same common radi-

cal. Depending on the compounds concerned, the

curves obtained from this correlation may show sharp

maxima and/or minima, but missing values can never-

theless be predicted from the curves with a fair degree

of reliability.

More recently, Pettifor [20] has reorganised the

Periodic Table of the elements into a single string

instead of the normal Periods and Groups ± the relative

ordering being given by what Pettifor terms the

`Mendeleev number'. The resulting sequence is illu-

strated in Fig. 8.

The purpose of the re-ordering was to permit a

better classi®cation of the structures of binary com-

pounds. Using this new arrangement of the Periodic

Table, enthalpies of formation of particular types of

compound with particular structures can be plotted as

a function of the Mendeleev number. Such a plot has

been made by Stolten [21] for metal nitrides and

carbides with the cubic NaCl structure Fig. 9. A

similar plot for the transition metal silicides, M5Si3,

with the D8m structure is presented in Fig. 10.

The values lie on a smooth curve, rather than on the

more irregularly-shaped curves resulting from the

Fig. 7. Dependence of the parameter A for various compounds

with the same cation on the anionic groups: (I) sulphates; (II)

phosphates; (III) molybdates; (IV) vanadates; (1) Cr3�; (2) Al3�;

(3) Sr2�; (4) Ba2�; (5) Ca2�; (6) Fe3�; (7) Mg2�; (8) Ni2�; (9)

Fe2�.
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`conventional' Periodic arrangement. This enables not

only missing values to be estimated for compounds

which are known to exist, but also values which

correspond to compounds in a metastable structure.

Such information is particularly important in calculat-

ing the stability ranges of phases formed from mix-

tures of compounds.

3.2. The `Miedema method' for enthalpies of mixing

and formation

In the Wigner±Seitz model of the alkali metals each

atom is segregated into a volume within which all the

electrons on the atom are treated as being localized

and in normal atomic states except one electron, which

is in an s state and is treated as the electron giving rise

to the electrical conductivity of the metal. This elec-

tron has a wave function which is different from that in

the isolated atom. The s wave function at the periphery

of the cell occupied by each atom joins smoothly with

the s wave function in neighbouring cells, thus per-

mitting easy movement of s electrons among the cells.

This gives rise to metallic conduction.

When an alloy is formed between two elements, the

cells containing the metallic ions will differ from one

metallic species to the other. The nature of these

species and their relative attraction for valence elec-

trons, which is re¯ected in the Pauling electronegativ-

ities, makes an important contribution in a negative

sense to the enthalpy of formation of alloys according

to Miedema [35]. Counteracting this effect is the mis-

match of conduction electron wave functions and

electron densities at the joining plane between two

cells containing different metallic ions. This density

term (�m) leads to a positive contribution to the

enthalpy of mixing. The enthalpy of formation of

an intermetallic compound can thus be expressed in

a simpli®ed form by the equation

�fH
0
298 � ÿA�EA ÿ EB�2 � B��m� (24)

Miedema identi®es the ®rst term, following the

model of metallic contact potentials in free electron

theory, with the difference in work function for the two

metals, and shows that the electron density term can be

related to the respective compressibilities of the

metals forming the compound

m � B=V

where V is the molar volume.

Miedema et al. [35±39] have published a series of

papers in which they have demonstrated that experi-

mental enthalpies of formation for solid and liquid

Fig. 8. The Pettifor single string rearrangement of the Periodic Table in the sequence of the Mendeleev number.
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binary alloys of transition metals can be accounted for

within reasonable limits. The expression they derive

for the enthalpy of formation is

�fH � �ÿPe�����2 � Q0��n
1=3
WS�2� (25)

where P and Q are constants having nearly the same

values for widely different alloy systems (e.g. inter-

metallic compounds of two transition metals or liquid

alloys of two non-transition metals), �* is obtained by

adjusting the experimental work functions, and n is

obtained from estimates of the charge density at the

Wigner±Seitz boundary.

For regular liquid or solid solutions, the concentra-

tion dependence of �fH contains the product cs
Acs

B.

For ordered compounds, the area of contact between

dissimilar cells is larger than the statistical value. Near

the equiatomic composition, experimental results

show that the ordering energy of alloys (f �cs
A; c

s
B�)

is, quite generally, of the order of 1/3 of the total

enthalpy of formation.

Consideration of the physical origin of the two

terms in Eq. (25) suggests that in addition to the

ordering function, there is another factor, g�cA; cB�,
that varies somewhat with the relative concentration of

the two metals. Concentration dependent values of

�fH can thus be derived using the more general

expression

�fH=N0 � f �cs
A; c

s
B�:g�cA; cB��ÿPe�����2

� Q0��n
1=3
WS�2� (26)

Fig. 9. Enthalpies of formation of carbides and nitrides with the cubic NaCl structure plotted using the Pettifor arrangement of the Periodic Table.
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N0 is Avogadro's number, �fH is expressed per gram

atom of alloy, and

g�cA; cB� � 2�cAV
2=3
A � cBV

2=3
B �=�V2=3

A � V
2=3
B �:
(27)

Table 13 presents the values of �*, n
1=3
WS and V

2=3
m

selected by Miedema et al. [26] and used in calculating

enthalpies of formation.

The method due to Miedema, described above,

has the great advantage that enthalpies of forma-

tion can be calculated for many alloy systems

where no experimental information whatsoever is

available.

3.3. Properties of mixing `free volume' theory

In a recent series of papers [40±42], Tanaka,

Gokcen and Morita have described how the thermo-

dynamic properties of mixing in liquid binary alloys

can be derived from physical properties using the `free

volume' theory proposed by Shimoji and Niwa [43],

the ®rst approximation of the regular solution model

as described by Gokcen [44], and a consideration of

the con®guration and vibration of the atoms in the

alloys.

Assuming that an atom vibrates harmonically in its

cell surrounded by its nearest-neighbours, the follow-

ing equations may be used to calculate the excess

properties of mixing:

�GE � �H ÿ T�SE (28)

�H � NAB
AB=Z (29)

with

NAB � ZN0XAXB�1ÿ XAXB
AB=kT� (30)

�SE � �SE
conf ��SE

nonconf (31)

�SE
conf � ÿX2

AX2
B
2

AB=2kT2 (32)

�SE
nonconf � 3=2kN0fXAln�vA=vAA�

� XBln�vB=vBB�g
� 3=2kN0f2XAln�LA=LAA�
� 2XBln�LB=LBB��XAln�UAA=UA�
� XBln�UBB=UB�g (33)

where NAB is the number of A±B pairs; Z the co-

ordination number; 
AB the exchange energy; k the

Boltzman's constant; N0 the Avogadro number; XA, XB

are mol fractions; vA, vB, vAA and vBB are free

volumes; LA, LB, LAA and LBB are the distances which

the interatomic potential extends in a cell; and UA, UB,

UAA and UBB are the potential energy depths in a cell.

In these equations, the suf®ces AA and BB denote

pure elements and A and B the states of A and B atoms

in an A±B alloy.

By differentiation and rearrangement, the above

equations can also be used to derive partial thermo-

Fig. 10. Enthalpies of formation of transition metal silicides, M5Si3, with the D8m structure plotted using the Pettifor arrangement of the

Periodic Table.
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dynamic properties of mixing:

� �HB � 
AB (34)

��S
E
B � ��S

E � 3=2kN0��LAA ÿ LBB�2�=LAALBB

� f4UAAUBB ÿ 2
AB�UAA � UBB�
ÿ �UAA � UBB�2g=2UAAUBBg (35)

where UAA and UBB can be obtained from:

Uii � ÿ2�2L2
iiMii�

2
ii=N0 �i � A or B� (36)

with Mii being the atomic weight, Lii half the nearest-

neighbour distance, given by

Lii � 1=2�21=2vii=N0�1=3 �i � A or B� (37)

where vii is the molar volume. �ii is the frequency of an

atom, which can be evaluated using the following

equation proposed by Iida and Guthrie [45]:

�ii � 2:8� 1012�ii�Tm0ii=Miiv
2=3
ii �1=2

�i � A or B� (38)

where Tm0ii is the melting point and �ii the coef®cient

required to transform the solid-state frequency to that

in the liquid state at the melting point. Value of �ii can

be obtained from experimental data for the surface

tension of the pure elements in the liquid state.

It can be seen from the above equations that, if the

partial enthalpy of mixing is known, both the partial

excess entropy and partial excess Gibbs energy of

mixing can be calculated. Using these equations,

Tanaka et al. have demonstrated the relation between

enthalpy and excess entropy of mixing in liquid binary

alloys. The necessary enthalpy of mixing data for the

calculations were obtained both from published

experimental values and also by use of the Miedema

method described above. In addition, an equation

allowing for the in¯uence of temperature on the

enthalpy±entropy relation was derived.

Tanaka et al. have used the free volume theory to

calculate successfully activity coef®cients of solutes at

in®nite dilution in liquid iron-base binary alloys [42].

Table 13

Parameters of Eq. (1) to be used in calculating enthalpies of formation of alloys

Metal �* (V) n
1=3
WS V

2=3
m (cm2) Metal �* (V) n

1=3
WS V

2=3
m (cm2)

Sc 3.25 1.27 6.1 Li 2.85 0.98 5.5

Ti 3.65 1.47 4.8 Na 2.70 0.82 8.3

V 4.25 1.64 4.1 K 2.25 0.65 12.8

Cr 4.65 1.73 3.7 Rb 2.10 0.60 14.6

Mn 4.45 1.61 3.8 Cs 1.95 0.55 16.8

Fe 4.93 1.77 3.7 Cu 4.55 1.47 3.7

Co 5.10 1.75 3.5 Ag 4.45 1.39 4.7

Ni 5.20 1.75 3.5 Au 5.15 1.57 4.7

Y 3.20 1.21 7.3 Ca 2.55 0.91 8.8

Zr 3.40 1.39 5.8 Sr 2.40 0.84 10.2

Nb 4.00 1.62 4.9 Ba 2.32 0.81 11.3

Mo 4.65 1.77 4.4 Be 4.20 1.60 2.9

Tc 5.30 1.81 4.2 Mg 3.45 1.17 5.8

Ru 5.40 1.83 4.1 Zn 4.10 1.32 4.4

Rh 5.40 1.76 4.1 Cd 4.05 1.24 5.5

Pd 5.45 1.67 4.3 Hg 4.20 1.24 5.8

La 3.05 1.09 8.0 Al 4.20 1.39 4.6

Hf 3.55 1.43 5.6 Ga 4.10 1.31 5.2

Ta 4.05 1.63 4.9 In 3.90 1.17 6.3

W 4.80 1.81 4.5 Tl 3.90 1.12 6.6

Re 5.40 1.86 4.3 Sn 4.15 1.24 6.4

Os 5.40 1.85 4.2 Pb 4.10 1.15 6.9

Ir 5.55 1.83 4.2 Sb 4.40 1.26 6.6

Pt 5.65 1.78 4.4 Bi 4.15 1.16 7.2

Th 3.30 1.28 7.3 Si 4.70 1.50 4.2

U 4.05 1.56 5.6 Ge 4.55 1.37 4.6

Pu 3.80 1.44 5.2 As 4.80 1.44 5.2
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Some results of these calculations are shown in

Fig. 11.

3.4. Correlation methods

In the CALPHAD modelling of phase diagrams as

well as in analysing the cohesive and thermal beha-

viour of materials, it is necessary to have information

on various kinds of properties. The requirements have

been discussed, in particular, in a series of papers by

Fernandez Guillermet and Grimvall [46±48] and a

summarised form is presented in the Group 5 report

contained in `Proceedings of the 1995 Ringberg Work-

shop on Unary Data' [49]. The requirements are of

three kinds:

3.4.1. Thermophysical properties of single phases

± Molar volume (Vm) or average volume per atom (
)

± Isothermal (BT) and isentropic (BS) bulk moduli;

other elastic EÃ constants, and the `elastic' Debye

temperature (�E)

± The pressure derivative (B0�(@B/@T)T) and the

temperature of the bulk modulus (@B/@T)

± The thermal expansion coefficient ��1/Vm(@Vm/

@T)P

± The heat capacity at constant pressure (CP) as a

function of temperature; in particular, the low

temperature CP values and the related Debye

temperature (�C) and electronic heat capacity (e)

± The total entropy (ST) as a function of

temperature, and the related entropy Debye

temperature (�S)

3.4.2. Thermophysical properties of two phases

± Equilibrium temperatures for solid±solid phase

equilibria (Ttr), enthalpies (�Htr) and entropies

(�Str) of transformation

± Equilibrium temperatures for solid±liquid equili-

brium (Tfus), enthalpies (�Hfus) and entropies

(�Sfus) of fusion

± Enthalpies of formation (�fH
0
298) of compounds

at 298 K

± Cohesive energies (Ecoh) of elements (Me) and

compounds (MeX), i.e. the enthalpy changes for

the reactions

Me�st� ! Me�g�
MeX�st� ! Me�g� � X�g�

at 0 K and 1 atm, respectively. In these equations

`st' and `g' refer to the stable modification and the

gaseous monoatomic state, respectively.

For many stable phases, the above properties are

known from experimental measurements and can be

obtained from standard evaluations of thermodynamic

data. However, in the case of metastable phases,

usually there are no experimental data available and

methods to predict these quantities and to judge the

reliability of existing estimates are needed. A brief

summary of the predictive methods, based on estab-

lished trends in the thermodynamic quantities of ele-

ments and compounds, is given here.

3.4.3. Properties related to cohesion and the

equation of state (EOS) of solids

Many of the properties reviewed in the previous

section depend upon the bonding behaviour of the

solid. The way in which they co-vary has been studied

both empirically and theoretically. Examples of the

empirical approach are the relations between BT and

1/
, and that between Ecoh and BT which have been

established for elements and compounds. Additional

Fig. 11. Calculated partial excess Gibbs energy values for solutes

in dilute solution in liquid Fe-base binary alloys.
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relations are provided by models of the binding energy

vs. distance function. For instance, the Lennard±Jones

type of expression E(
)�a/
m�b/
n predicts that the

dimensionless ratio ��Ecoh/BT
 depends only on the

parameters `m' and `n'. The EOS developed by Rose

et al.[50] predicts that the pressure derivative B0T is

related in a simple way to the quantity �.

A useful combination of thermodynamic quantities

is the well-known GuÈhneisen parameter

G � �VmBT=CV (39)

G(298) has been shown to remain fairly constant

within a given class of substances.

Recently, it has been shown [46±48] that correla-

tions involving the vibrational entropy of elements and

compounds can be established by using the effective

force constant kS, de®ned by

kS � �kB�S=h�2Meff (40)

where Meff is the logarithmically averaged atomic

mass in a formula unit of the compound, and the

characteristic energy ES

ES � kS
2=3 (41)

which is related to the lattice vibrations. It has been

found that ES co-varies with �fH
0
298 and Ecoh in the

case of transition metal carbides and nitrides.

4. Neural network scanning of databases

There are thousands of compounds for which ther-

modynamic data are unavailable. With the present

extensive computer databases it should be possible

to estimate missing values relatively easily by making

use of the computer to exploit trends in the Periodic

Table and to develop empirical correlations among

properties. As discussed at the 1995 Ringberg Work-

shop on Unary Data [49], what is required is:

1. The addition of some other properties to our data-

bases. These properties, although of importance in

their own right, should be added because they can

act as independent variables in the correlations.

These include, in addition to those listed above:

± Electronegativities

± Ionic and atomic radii

± A description of the structural units involved

(ex: K2SO4 contains K and SO4 ions)

± A description of structure and bond types.

2. The development of software which can readily

access the data for a class of compounds, set up

property spreadsheets, and search for multivariate

correlations. Physical principles would guide the

user in the choice of variables, etc.

3. The development of neural networks accessing the

above databases. The user would present the pro-

gram with a property to be estimated, along with a

number of other properties with which it might be

correlated. Some idea of the expected correlations

would also be given as a starting point. The net-

work would then learn (i.e. refine the correlations)

by looking at all compounds within a class of

compounds from the database. As new data on a

compound or data on new compounds became

available, they could be fed to the program to

refine the neural network. With a neural network

for each property, we would have a true expert

system for property estimations.

Many of the estimation methods described in this

paper are indeed currently being programmed and

linked for use with the SGTE Databases as a source

of reference data wherever needed. They will be

available as a software product shortly [51].
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